INFLUENCE EXERCÉE PAR LE pH SUR LA FORMATION DE COMPOSÉS DE TYPE SALINO-PROTÉIQUE ENTRE ARSENIC, ANTIMOINE, BISMUTH ET PROTÉINES (*)

P. MASCHERPA et L. CALLEGARI
(Institut de Pharmacologie et Thérapie de la R. Université de Genova dirigé par le Prof. A. Benedicenti)

Résumé des AA.

(Avec 5 figg. d. l. t.)

Dans notre note précédente (1) sur le comportement de l’As, Sb, Bi, sous la forme d’éléments dans les systèmes protéiques, nous avons conclu que, quoique à un degré différent, ces trois éléments peuvent se combiner avec la molécule protéique.

Nous rapportons ici d’autres expériences faites uniquement dans le but de démontrer que la fixation de l’As, du Sb, et du Bi aux protéines est en rapport avec quelques constantes chimico-physiques des protéines mêmes et surtout de la concentration hydrogénionique.

Expériences. – Nos expér. ont été faites avec des sol. de gélatine à 1 % dans l’eau, portées à un pH divers selon la méthode de Loeb. La détermination du pH de ces sol. a été faite par voie électrométrique.

A 10 cc de chaque sol. de gélatine, contenus dans des tubes d’essai, on ajoute 0,50 gr d’As ou de Sb ou de Bi, sous forme de poudre impalpable, obtenue par le procédé que nous avons décrit dans la note précédente.

Nous avons laissé, pendant 24 hh. et à la t° de 27°, les tubes d’essai, complètement remplis, bouchés avec des bouchons de gomme. Pendant ce temps, nous les avons agités également et contemporainement avec un agitateur expressément préparé. On filtre, on centrifuge et l’on dose pour chaque tube le contenu d’As, Sb, Bi en suivant le procédé que nous avons décrit plus haut.

(*) Archivio di Scienze Biologiche, XVIII, 452-462, 1933, avec 5 figg. d. l. t. – Pour la Bibliographie voir la note complète.
(1) Voir ce même Tome.
Le tableau qui suit, montre les résultats que nous avons obtenus.

<table>
<thead>
<tr>
<th>Numéro de l'échantillon</th>
<th>pH</th>
<th>As %</th>
<th>Sb %</th>
<th>Bi %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,50</td>
<td>0,197</td>
<td>0,0208</td>
<td>traces</td>
</tr>
<tr>
<td>2</td>
<td>6,09</td>
<td>0,087</td>
<td>0,0190</td>
<td>"</td>
</tr>
<tr>
<td>3</td>
<td>5,79</td>
<td>0,077</td>
<td>0,0195</td>
<td>"</td>
</tr>
<tr>
<td>4</td>
<td>3,23</td>
<td>0,032</td>
<td>0,0162</td>
<td>"</td>
</tr>
<tr>
<td>5</td>
<td>3,06</td>
<td>0,034</td>
<td>traces</td>
<td>"</td>
</tr>
</tbody>
</table>

On voit par là que le pH des gélatines a une influence très grande sur la fixation de l'As et du Sb. Cette influence est très évidente pour l'As, la quantité duquel, présente dans la protéine, décroît régulièrement au fur et à mesure que le pH décroît. Pour le Sb, quoique la tendance à la répétition du phénomène soit généralement visible, celui-ci, toutefois, est moins régulier. Pour le Bi, même en variant le pH, la quantité fixée est toujours indosable gravimétriquement.

Dans des expér., que nous allons faire prochainement, nous suivrons des méthodes plus délicates pour la recherche des moindres quantités de Bi. Pour le moment nous nous sommes bornés à prendre en considération le comportement de l'As et du Sb.

Les faits que nous avons observés résultent encore plus clairement si on les exprime avec des courbes (Figg. 1 et 2). Sur les abscisses sont exprimées les valeurs du pH, sur les ordonnées les quantités d'As (en mmgr) et celles de Sb (en dixièmes de mmgr), fixées par les protéines.

Les résultats obtenus de nos expér. nous font penser que les deux métalloïdes (As, Sb) forment avec la protéine des composés de type
salino-protéique, facilement dissociables. En effet, tandis que quelques composés organiques très complexes d'As et de Sb ne réagissent pas, comme on le sait, avec H_2S, dans notre cas les deux métalloïdes peuvent être facilement précipités par H_2S, même sans destruction préalable de la matière organique.

De ces deux éléments l'As seul se comporte comme un véritable métalloïde, tandis que le Sb a souvent un comportement très irrégulier, même au point de vue chimique.

Pour ce qui regarde la protéine, elle peut être considérée, d'après les théories classiques, comme un électrolyte amphothère. À pH isoélectrique la protéine se comporte indifféremment comme cation et comme anion; à pH supérieurs, elle se comporte de préférence comme cation; à pH inférieurs de préférence comme anion. Cela étant, il est évident que l'As, métalloïde typique, s'attachera à la protéine en saturant ses valences basiques, comme l'expér. nous l'a démontré. En augmentant le pH, on augmente les points d'attache de l'As à la protéine et, par conséquent, la quantité de l'élément, que nous retrouverons dans la protéine même, augmentera aussi. Le même fait se répète pour le Sb, quoique avec moins d'évidence.

Si l'on observe attentivement la courbe qui représente la fixation de l'As en fonction du pH, on remarque, en outre des faits susdits, une chose très intéressante, c'est-à-dire que, lorsqu'on arrive à un pH très bas, la quantité d'As fixé tend à augmenter. Il faut donc admettre que, dans ce cas, cet élément ne se comporte plus comme anion mais, au contraire, comme cation.

Si nous raisonnons selon les théories classiques, nous devons donc conclure que les deux métalloïdes As et Sb forment avec la protéine des composés à type salino-protéique, en se comportant en anions.

On peut raisonner tout autrement, si l'on prend en considération
les théories modernes des solutions, comme on l’a fait dans cet Institut, en travaillant sur l’activité ionique dans les systèmes protéiques.

Pour confirmer toujours plus le comportement anionique des deux métalloïdes, que nous avons étudiés vis-à-vis des protéines, il nous a semblé intéressant rechercher cette confirmation dans l’étude du phénomène inverse.

Les expériences que nous allons décrire se rapportent à ce qu’on a vu dans les nombreuses recherches faites dans ce Laboratoire, relativement aux métallo-protéines.

Dans ces études on a vu (Bonino) que, pour les protéines ayant pH inférieurs à 6,5–7, un métal typique comme le Co se fixe en forte quantité, tandis que, pour un pH supérieur, la quantité fixée diminue. Dans le premier cas, la combinaison métallo-protéique doit être considérée comme un composé salino-protéique, tandis que, pour pH supérieurs, on doit admettre la formation de complexes chimiques dans lesquels le métal est masqué vis-à-vis des réactifs communs.

Or, il nous a semblé intéressant comparer avec le Co, choisi comme métal typique, l’As qui, dans nos expériences, se comporte comme un véritable métalloïde.

En expérimentant dans les mêmes conditions, nous pouvions nous atteindre à un comportement inverse du Co et de l’As, pour ce qui concerne l’influence du pH sur la fixation et inversement de la fixation sur le pH.

Dans ce but nous avons fait l’expérience suivante. Nous avons préparé les gélatines dans la manière habituelle, nous avons mesuré électrométriquement le pH initial, en nous servant de l’électrode à hydrogène de Hilderbrandt.

On met 50 cc de chacune des 5 gélatines dans des tubes d’essai en verre neutre, traités à la vapeur et de la capacité de 50 cc. On a ainsi 2 séries de 5 gélatines, chacune à divers pH.

Dans une série on met en contact avec la gélatine g 0,50 de cobalt (Kahlbaum), en poudre impalpable, obtenue en calcinant CoCO₃ et en réduisant l’oxyde dans un courant d’hydrogène. Dans la 2ᵈᵉ série on met l’As (g 0,50) en contact avec 50 cc de gélatine.

On remplit d’azote l’espace libre dans les tubes, au-dessus du niveau du liquide et puis on les bouche avec des bouchons en gomme stérilisés et paraffinés. La température est 25°C. Durée du contact entre la poudre et la sol. protéique 20 hh. Toutes les 2 heures on agite pendant 10 minutes, contemporainement et également les tubes.
Après 20 hh on filtre et centrifuge contemporainement les liquides des deux séries. On remarque, dans ceux qui ont été traités par Co, à pH acides, une couleur rosée assez évidente (composés salino-protéiques), à pH alcalins une couleur brune (complexes).

Dans les liquides traités avec As, après filtration et centrifugation on remarque, à pH alcalins, une coloration brun-violacé-claire, tandis que les autres échantillons ont une couleur normale.

La recherche de la quantité de Co contenue a été faite par électrolyse, après destruction de la matière organique et en se servant d’un courant de 3,5 Volt et 1 Ampère.

La recherche de l’As a été faite comme pyroarséniate de Mg. On a obtenu les résultats suivants:

<table>
<thead>
<tr>
<th>N° de l’échantillon</th>
<th>pH initial</th>
<th>Co fixé % mg</th>
<th>As fixé % mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,20</td>
<td>1,04</td>
<td>2,25</td>
</tr>
<tr>
<td>2</td>
<td>4,90</td>
<td>3,84</td>
<td>1,48</td>
</tr>
<tr>
<td>3</td>
<td>4,30</td>
<td>4,00</td>
<td>1,28</td>
</tr>
<tr>
<td>4</td>
<td>3,55</td>
<td>6,40</td>
<td>1,11</td>
</tr>
<tr>
<td>5</td>
<td>2,50</td>
<td>8,52</td>
<td>1,40</td>
</tr>
</tbody>
</table>

Fig. 3

Fig. 4
Si, comme nous l'avons fait précédemment, nous reportons les pH sur les ascisses et sur les ordonnées le contenu (en dixièmes de mmgr) de Co et d’As, nous avons les deux courbes ci-dessus (Figg.3 et 4). On voit facilement les différences essentielles entre le Co et l’As: le 1er, métal typique, se comportant comme cation en présence des protéines, le 2e, métalloïde typique, se comportant comme anion.

La fixation du Co est plus grande pour pH inférieurs au pH isoélectrique; au contraire, la fixation de l’As est plus accentuée à pH supérieurs.

Encore cette fois-ci on remarque, pour l’As à pH très bas, une tendance marquée à se comporter plutôt comme cation que comme anion.

Après avoir traité les gélatines avec As et avec Co, nous en avons déterminé le pH. Nous ne nous sommes plus servis de l’électrode à hydrogène de HILDERBRANDT, car cet électrode est facilement "empoisonné", par l’As, et pour cela donne toujours des valeurs trop basses. Nous nous sommes servis de l’électrode à hydrochinone de BILLMANN qui élimine, en partie du moins, l’inconvénient susdit. Voici les résultats que nous avons obtenus. Pour l’As:

<table>
<thead>
<tr>
<th>N° de l’échantillon</th>
<th>pH initial</th>
<th>pH final</th>
<th>pH in. pH fin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,20</td>
<td>2,01</td>
<td>5,19</td>
</tr>
<tr>
<td>2</td>
<td>4,90</td>
<td>2,39</td>
<td>2,31</td>
</tr>
<tr>
<td>3</td>
<td>4,30</td>
<td>2,22</td>
<td>2,08</td>
</tr>
<tr>
<td>4</td>
<td>3,55</td>
<td>1,95</td>
<td>1,60</td>
</tr>
<tr>
<td>5</td>
<td>2,50</td>
<td>1,00</td>
<td>1,50</td>
</tr>
</tbody>
</table>

Pour le Co:

<table>
<thead>
<tr>
<th>N° de l’échantillon</th>
<th>pH initial</th>
<th>pH final</th>
<th>pH in. pH fin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,20</td>
<td>7,90</td>
<td>0,70</td>
</tr>
<tr>
<td>2</td>
<td>4,90</td>
<td>5,72</td>
<td>0,82</td>
</tr>
<tr>
<td>3</td>
<td>4,30</td>
<td>5,30</td>
<td>1,00</td>
</tr>
<tr>
<td>4</td>
<td>3,55</td>
<td>4,85</td>
<td>1,30</td>
</tr>
<tr>
<td>5</td>
<td>2,50</td>
<td>5,92</td>
<td>3,42</td>
</tr>
</tbody>
</table>
Si nous représentions les valeurs des deux tableaux par une courbe, dans laquelle nous avons noté les valeurs du pH sur les abscisses et sur les ordonnées la différence entre pH initial et pH final, on obtient le deux graphiques de la fig. suivante (Fig. 5).

De ces expér. on peut donc conclure que, dans les systèmes protéiques, l'As et le Co ont un comportement complètement opposé. Les résultats des recherches que Bonino a faites avec le Co et que nous avons faites avec le As sont ainsi entièrement confirmés.

Conclusions et considérations. — Si nous considérons les résultats obtenus moyennant les données expérimentales rigoureusement exactes, que nous avons rapportées, nous pouvons en tirer quelques déductions intéressantes au point de vue de la pharmacologie et de la toxicologie.

De l'examen du graphique de la fig. 5 on voit clairement le comportement opposé du Co et de l'As, lorsque le métal et le métalloïde sont mis en contact avec les substances protéiques. Cette différente manière de se comporter est en rapport avec la diverse toxicité de ces deux éléments.

La forte toxicité de l'As, véritable poison du protoplasme, comparativement à la toxicité limitée du Co (Mascherpa), semble dépendre, d’après nos expériences, de ce que l'As, soit à pH inférieurs soit à pH égaux ou supérieurs à celui des liquides protéiques de l'organisme, forme toujours avec les protéines des composés à type salino-protétique, facilement dissociables, de sorte que l'As-ion peut exercer son action délétère. Par contre, si le Co forme des composés à type salino-protétique à pH bien inférieurs au pH normal des liquides de l'organisme, à pH normaux ou supérieurs, il tend à former des complexes, dans lesquels le métal reste masqué, en perdant une partie de sa toxicité, com-
me on l'a déjà démontré, en manière évidente, par d'autres expériences (Mascherpa et Perito).

On doit ajouter, en outre, que le pouvoir toxique moins élevé du Co dépend aussi de ce que ce métal, en entrant à faire partie des composés protéiques, change sa valence et, de bivalent qu'il est, il devient trivalent, ce qui arrive, du reste, pour d'autres métaux, comme p.ex. pour le fer (Starkenstein).

Cela ne peut pas arriver pour l'As, qui, dans les milieux protéiques, tout en contractant des liens avec les protéines, ne forme pas des composés qui soient capables de masquer ses propriétés chimiques et physiologiques.

Mais, si nous administrons une préparation arsenicale dans laquelle, à cause de la valence de l'As et de la structure du complexe chimique duquel il entre à faire part, les propriétés de l'As-ion ne soient pas mises en évidence, cette préparation sera certainement moins toxique, comme toute la chimiothérapie arsenicale le démontre.

Ces considérations laissent entrevoir toute l'importance que peut avoir pour l'être vivant la réaction des liquides, dans lesquels les cellules vivent, et du protoplasme qui les constitue, et font penser que, dans les modifications de ces réactions, l'organisme peut trouver une espèce de défense contre l'action de quelques poisons.

Si le raisonnement, que nous venons de faire pour interpréter des résultats irréfutables donnés par des expériences, est exact, nous devrons en trouver la confirmation en d'autres expériences, quelques-unes desquelles sont déjà en cours de publication.