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INTRODUCTION

In the last few years this laboratory developed a research program to identify
electrophysiologically functional analogies between pineal and retinal photoreceptors
in fishes (see also 47). In the first part of this report we shall briefly describe the
results of these studies, already published elsewhere (41-43,46), while in the
following section we introduce some new concepts consequential to our studies
and indicating extremely interesting research paths.

Pineal receptor cells share both embriological and fundamental ultrastructural
parallelism (Fig. 1) with retinal photoreceptors, but develop in two disparate
regions of the head, each characterized by distinct visual properties: photoreceptors
in the retina are part of a cellular mechanism subserving contrast detection with a
high degree of visual acuity; pineal receptors on the other hand are submerged in a
totally opaque medium which should restrict their activity to luminosity detection.
Thus the principal question we posed was whether pineal receptor cells had
developed special transduction properties to match their specific functional role.

It was also important to consider that pineal receptor cells produce an hormon,
melatonin (MLT), with circadian rhythmicity (58) which, at least in fish ought to
be regulated by the pineal photoreceptor responses to illumination (cfr. 4). Further-
more, various authors indicate MLT as an intracellular calcium regulator and a
potential antioxidant agent (65). Here we discuss how these MLT influences could
be advantageously experimented on retinal photoreceptors to elucidate their mechanism
of action.

1. Cell electrophysiology.

We observed that the responses of pineal cells to brief flashes are similar to
those recorded from retinal cone cells of the same species, except for a slower time
course (Fig. 2). The average membrane potential recorded from dark adapted
pineal photoreceptors was -23 mV. Brief light flashes produced hyperpolarizing
responses of increasing amplitude with increasing intensities. The relation between
amplitude response and light intensity is described by a hyperbolic function, a
modified form of the Michaelis-Menten equation:

Vv 1"
= (1)
Vmax [I"+1]
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Fig. 1. - Electron micrograph illustrating the fine structure of pineal photoreceptor cells.

Eache cell is characterized by the presence of a short, multilamellar outer segment (os) con-
nected to a region rich in endoplasmic reticulum (er), ribosomes and mitochondria (m). N: nuclei
of adjacent photoreceptors. Bar is one micrometer. Inset: outer segment lamellae are opened to the
extracellular space (arrows), like in retinal cones photoreceptors. Asterisks mark caliceal process.
Bar is 350 nanometers.
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Fig. 2. - Superimposed voltage responses of an identified pineal photoreceptor to 50 ms white flashes
of increasing intensity (2.4x10°, 1x10°, 3.4x10°, 6x10° and 8x10° ph um? sec ).

Zero in the ordinate represents the value of dark membrane potential. The upper line indicates the
time of illumination.

where V is the amplitude in mV with maximum Ve 1 the flash intensity and I,
the half saturating intensity. The exponent n is a sign of cell sensitivity. Data are
best fitted by a n value ranging from 0.7 to 0.85, indicating that the dynamic range
of pineal photoreceptors spreads over more than four logarithmic units of light
intensity (Fig. 3), a value about twice as wide as that of cones.

A significant difference between pineal and retinal receptor cells appears when
comparing the time to peak of their respective photoresponses. Thus, the pineal
response to near threshold light intensities shows time to peak up to 1.2 sec,
decreasing to about 0.25 sec for saturating responses (Fig. 4). These values are
greater than for retinal cones, which show values ranging from about 200 ms to 80
ms going from threshold to saturating intensities, respectively (5). Light induced
membrane conductance changes recorded under voltage clamp indicate a conduct-
ance decrease of 187 pS during illumination. This value amounts to about 10% of
the absolute membrane conductance calculated from the dark current just before
the test flash. The extrapolated potential at which the photocurrent reverses is
about 60 mV above the dark potential, indicating that an ionic mechanism similar
to that in retinal photoreceptors may be involved (12, 44, 61). Further analogies
with retinal phototransductive mechanism are also observed by adding 50 mM 3-
isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, to the bathing
solution (11). This produces an about twofold increase in amplitude of the
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Fig. 3. - Stimulus-response relation of pineal photoreceptors.

Data were obtained by averaging the normalized peak responses from 31 cells (empty circles). The
continuous line represents the equation (1). Absciassae indicate logarithmic units of light intensity

(photons/area time).
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Fig. 4. - Time to peak of pineal responses to 50 ms flashes of increasing intensity.

Empty circles indicate the averaged data from 11 cells. Bars plotted upward are s.d. values.
Abscissae indicate logarithmic units of light intensity (photons/area time).
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photoresponse associated to a 25% increase of the time to peak. These results are
qualitatively comparable with those observed in amphibian retina (11), thus sup-
porting the hypothesis that cGMP regulates the pineal photoreceptor membrane
permeability to Na* ions, as in the retina (28, 29, 33, 73).

A typical feature of pineal photoreceptors consists in their responses to pro-
longed illumination which does maintain the same amplitude throughout the
whole period of stimulation, independently of the light intensity used (Fig. 5).
Thus, these cells do not show the typical time dependent changes in cell sensitivity
observed in retinal photoreceptors (13, 27). Similarly, the amplitude and kinetics
of the superimposed flash pineal responses, obviously depressed as function of the
background light, are not modified for the whole period of background illumina-
tion.
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Fig. 5. - Superimposted pineal photorespones to prolonged illumination of increasing intensities
(5x10% 1.1x10°, 2x10% and 3.2x10" ph um? sec”).

Zero in the ordinate indicates the dark membrane potential. The upper line represents the time of
illumination.

The fact that pineal receptor cells maintain the same response amplitude during
sustained illumination has an important functional implication with respect to their
secretory role, which is obviously dominated by complex sets of voltage sensitive
processes. The fix relationship between the level of ambient illumination and the
receptor cell membrane potential, typical of a luminance detector, thus reveals a
fine control of the hormone synthesis by absolute levels of light intensity.
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II. The light dependent control of pineal MLT.

The previous set of results indicated that photoreceptors activity is adequate to
control the process of MLT synthesis within a wide range of slowly changing
illumination, from threshold to saturating light.

The obvious next target was to investigate the mechanism linking the light-
induced variations of membrane potential to the biochemistry of MLT inside the
photoreceptor. MLT derives from SHT reacting in the presence of two regulatory
enzymes, N-acetyl-transferase (NAT) and 5-hydroxy-O-metiltransferase (5-HIOMT)
whose activation is known to depend on cAMP (see 71). Thus blockage of cyclic-
AMP (cAMP) formation would clearly lead to halting MLT synthesis. Since the
D, class of dopamine receptors are known to be negatively coupled to adenylate-
cyclase (see 71, 72), a project was then initiated by one of us (B.L.) to verify the
existance of this class of receptors in the photoreceptor cell membrane. Light is
known to stimulate dopaminergic retinal cells which trough the activation of D,
receptors could account for a drop of cAMP during illumination (35).

Recent results have shown the presence of D, receptors, a D, subtype, across the
photoreceptors plasma membrane (16). Experiments conducted by Longoni and
others (45) have demonstrated that D, receptors are also negatively coupled to
adenylate-cyclase, thus supporting the hypothesis that the synthesis of MLT may
be inhibited, during illumination by a dopaminergic mechanism acting on D,
receptors.

In darkness however dopaminergic cells are no more activated, so that the
inhibition of cyclase would be released leading to synthesis of MLT, a process
potentiated by the increased Ca™ entry through light sensitive channels. Once
produced, MLT may inhibit further dopamine syntesis (8).

III. Prospective studies of mlt functions in retinal photoreceptors.

Having achieved a basic understanding of the production mechanism of MLT,
the action of this molecule upon biological substrates represents our next question.
Indeed, MLT has been attributed many biological functions (2, 3, 25, 58, 60, 63,
64), however it still appears difficult to identify a common mechanism of action,
perhaps due to the existence of at least two types of melatoninergic receptors
bound to nervous membranes modulating adenylate cyclase (20), which may be
activated concomitantly to a passive diffusion of the highly lipophilic MLT mol-
ecule across cell membranes.

More recent studies on MLT consisted in testing its reported “in vitro” antioxi-
dant properties (53, 54, 66), on artificially induced cellular damages “in vivo™ (1,
3, 48, 59). It has been shown that MLT exerts a very potent protective role against
cellular damages induced by oxygen derived free radicals, among which the peroxyl
and hydroxyl radicals play a major role as initiators of lipid peroxidation. Such an
autocatalytic oxidative reaction plays a crucial role in membrane degeneration
through a progressive fragmentation of the unsaturated fatty acid chains of
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phospholipids with subsequent functional impairment of membrane proteins (26,
57, 69), eventually leading to the cell death. Since lipid peroxidation is often
considered as a major contributor to neurodegenerative diseases (24, 30, 32, 36,
51, 54, 55, 67, 70), the finding of a potential, new endogenous antioxidant like
MLT, devoid of appreciable side effects, should not be underestimated.

It would be restrictive to classify MLT just as an antioxidant agent, even if such
property may be of prime importance for therapeutical use. Indeed, other functions
of MLT have been described to be potentially important for the cell homeostasis,
like those affecting the intracellular calcium concentration (68). MLT affects
several cell components which play a key role in the regulation of internal free
calcium turnover, like Ca*™-ATPase and calmodulin (14, 15). MLT shows high
affinity binding to calmodulin (7) and, as other analogous substances do, it com-
petes with calcium, thus preventing the Ca-calmodulin dependent activation of
many enzymes, including phosphodiesterase. As a calmodulin antagonist, MLT
also interferes negatively with microtubules assembly (6, 34) which spontaneously
occurs during the continuous cytoskeletal rearrangement observed under physi-
ological conditions. Moreover, the hypothesis may be advanced that both the
activity of calcium as a second messenger and the calcium dependent direction of
calcium flux across both inositol-1, 4, 5-trisphosphate (IP,) and ryanodine-sensi-
tive intracellular calcium stores (62) could be influenced by MLT.

By contributing to keep a low cytosolic calcium concentration, MLT negatively
affects enzymatic Ca-dependent activities, including the Ca-calmodulin dependent
Nitric Oxide Synthase (NOS) (9, 10, 39). A decrease production of NO induced by
MLT has been recently described (56). In this context, MLT may be involved in
reducing neurotoxicity induced by NMDA receptors (17, 18), since the latter
activate NOS by increasing intracellular calcium concentration (50). An excess of
NO, a very active free radical reacting with superoxide, produces peroxynitrates
which may be fatally toxic to nerve cells (19). The concentration boundary where
NO starts to be toxic is still ill defined, and further studies will be needed to clarify
at what range of activity NOS may be kept under the influence of MLT.

It is surprising that neither of the two above mentioned activities of MLT, i.e.
the antioxidant and that of calcium regulation, have not yet been examined in the
cells of origin, the photoreceptors. This seems to us an interesting work to do, since
photoreceptors combine their neuroendocrine indolaminergic function with photo-
transduction, a process involving both a great amount of oxidative phosphorylation
and fundamental calcium dependent activities. In both pineal and retinal photoreceptors,
the volumetric ratio between inner segment mitochondria and the remaining cel-
lular organelles is as high as in no other nerve cell (43), suggesting a great number
of oxidative processes generating oxygen derived free radicals, such as superoxide,
hydroxyl and hydrogen peroxide (31). So the presence of an additional radical
scavenger, like MLT added to other endogenous enzymes, like superoxide dismutase
(SOD), catalase and gluthatione peroxidase may be beneficial for optimizing the
nerve cell survival. Thus photoreceptors may result being equipped with a self-
contained mechanism to produce and metabolize MLT (58), whose antioxidant
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action seems particularly useful at night when the energetic demand for active
transport may become more pressing (19 bis).

It would be particularly interesting to verify, on retinal photoreceptors, the
ability of MLT to modulate calcium concentration. In physiological conditions,
intracellular calcium acts upon guanylate cyclase whereby ¢cGMP production is
reduced at night, as calcium enters through the light sensitive channels, but it
increases during illumination, as the intracellular calcium lowers, thus becoming
a major factor for entraining a state of light adaptation (37, 38). Thus, by indirectly
modulating the cGMP dependent membrane conductances MLT could be an im-
portant regulator of photoreceptor sensitivity to light.

A further mechanism by which MLT may influence photoreceptor activity is by
suppressing production of NO which is known to modulate photoreceptor ion
channels (40). In particular, MLT is expected to suppress the NO induced increase
both of the diltiazem sensitive current and of the voltage dependent Ca conduct-
ance, the latter being further associated to facilitation of synaptic transmission
between photoreceptors and second order neurons.

In conclusion, the vast knowledge on photoreceptors properties would clearly
facilitate the interpretation of the possible changes induced by artificially varying
the levels of MLT and to identify its mechanism of action (49). Indeed, the possible
effects produced by MLT on photoreceptors may be due to some of its general
properties potentially applicable to other cell types as well, if one considers that
MLT receptors are distributed over numerous regions of the CNS (21-23) and in
cells of other tissues (52).

SUMMARY

The results from recent experiments on the cellular physiology of the trout
pineal photoreceptors are briefly reviewed. The arguments are mainly concerned
with pineal phototransduction. These studies have stimulated further research on
melatonin, a molecule produced in pineal as well as in retinal photoreceptors. A
discussion follows on our actual research object, that is a study of the influences
of endogenous melatonin upon retinal receptor cells activities.
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