
Phenomenology: Consciousness as 
integrated information

Everybody knows what consciousness is: it is what 
vanishes every night when we fall into dreamless 
sleep and reappears when we wake up or when we 
dream. Thus, consciousness is synonymous with 
experience – any experience – of shapes or sounds, 

thoughts or emotions, about the world or about the 
self.
It is also common knowledge that our consciousness 
depends on certain parts of the brain. For example, 
the widespread destruction of the cerebral cortex 
leaves people permanently unconscious (vegeta-
tive), whereas the complete removal of the cerebel-
lum, even richer in neurons, hardly affects con-
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sciousness. Furthermore, it matters how the cerebral 
cortex is functioning. For example, cortical neurons 
remain active throughout sleep, although their firing 
patterns may change. Correspondingly, at certain 
times during sleep consciousness fades, while at 
other times we dream. It is also well established 
that different parts of the cortex influence qualita-
tive aspects of consciousness: damage to certain 
parts of the cortex impairs the experience of color, 
whereas other lesions impair that of visual shapes. 
Neuroscientific findings are making progress in 
identifying the neural correlates of consciousness 
(Koch, 2004). However, to explain why experience 
is generated in the cortex and not in the cerebellum, 
why it fades in certain stages of sleep, why some 
cortical areas contribute color and others sound, 
and to address difficult issues such as the presence 
and quality of consciousness in newborn babies, in 
animals, or in pathological conditions, empirical 
studies are usefully complemented by a theoretical 
approach. Integrated information theory (IIT) con-
stitutes such an approach. What follows is an outline 
of IIT, streamlined and updated with respect to pre-
vious expositions (Tononi, 2004, 2008).

Three thought experiments
Three thought experiments lie at the heart of IIT 
– the photodiode thought experiment, the camera 
thought experiment, and the internet thought experi-
ment.

The photodiode thought experiment

Consider a human and a simple photodiode facing a 
blank screen that is alternately on and off. The pho-
todiode can tell ‘light’ from ‘dark’ just as well as a 
human. However, a human also has an experience 
of light or dark, whereas the photodiode presumably 
does not. What is the critical property that humans 
have and photodiodes lack?
According to IIT, the critical property has to do 
with how much information is generated when the 
distinction between light and dark is made. From 
the intrinsic perspective of a system – photodiode 
or human – information can best be defined as a 
“difference that makes a difference”1: the more 
alternatives (differences) can be distinguished, to 
the extent they lead to distinguishable consequenc-
es (make a difference), the greater the information. 
When the blank screen turns on, the photodiode’s 

mechanism, which can distinguish between a low 
and a high current, detects a high current and, say, 
triggers the output ‘light’ rather than the output 
‘dark’. Since the distinction is between two alter-
natives, the photodiode generates 1 bit of informa-
tion. We take that bit of information to specify 
‘light’ as opposed to ‘dark’, but it is important to 
realize that, from the photodiode’s perspective, the 
only specification it can make is whether its input 
were in one of two ways and whether therefore its 
outputs should be in one of two ways – this way or 
not this way. Any further specification is impos-
sible because it does not have mechanisms for it. 
Therefore, when the photodiode detects and reports 
‘light’, such light cannot possibly mean what it 
means for us – it does not even mean that it is a 
visual attribute.
When a human reports pure light, by contrast, 
mechanisms in his brain distinguish, in a specific 
way, among a much larger number of alternatives, 
and are primed accordingly for a large number of 
different outcomes, thus generating many bits of 
information. This is because ‘light’ is distinguished 
not only from ‘dark’, but from a multitude of other 
possibilities, for example a red screen, a green 
screen, this movie frame, that movie frame, a sound, 
a different sound, a thought, another thought, and 
so on. In other words, each alternative can be dis-
tinguished from the others in its own specific way, 
and can lead to different consequences, including 
different verbal reports, actions, thoughts, memories 
etc. To us, then, ‘light’ is much more meaningful 
precisely because we have mechanisms that can 
specifically distinguish this particular state of affairs 
we call ‘light’ against each and every one of a large 
number of alternatives, and lead to appropriately 
different consequences. Indeed, as a human, no mat-
ter how hard I try, I cannot empty an experience of 
meaning: I cannot reduce the experience of ‘light’ to 
‘this and not this’. More generally, if I am not blind 
from birth, I cannot reduce myself to lacking visual 
experiences; if I am not color-blind, I cannot reduce 
myself to seeing the world in black-and-white; if I 
know English, I cannot see the word “English” and 
not understand it; if I am an experienced musician, I 
cannot reduce myself to listening to a sonata as if I 
were a novice, and so on.
This central point may be appreciated either by addi-
tion or by subtraction. By addition, I realize that I 
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can only see ‘light’ the way I see it, as progressively 
more and more meaning is added by mechanisms 
that specify how ‘light’ differs from each of count-
less alternatives: from various colors, shapes, and 
countless other visual and non-visual experiences. 
By subtraction, I can realize that, if I were to lose 
one neural mechanism after the other, my being 
conscious of ‘light’ would degrade – it would lose 
its non-coloredness, its non-shapedness, it would 
even lose its visualness – while its meaning is pro-
gressively stripped down to just ‘one of two ways’, 
as with the photodiode. Either way, the theory says 
that, the more my mechanisms specify how ‘light’ 
differs from its many alternatives, and thereby lead 
to different consequences – the more they specify 
what light means – the more I am conscious of it.

The camera thought experiment

Information – the ability to discriminate among a 
large number of alternatives – is thus an essential 
ingredient for consciousness. However, another 
thought experiment, this time involving a digital 
camera, shows the need for a second ingredient. 
Assume the sensor chip of the camera is a collection 
of a million binary photodiodes. Taken together, 
then, the camera’s photodiodes can distinguish 
among 21,000,000 alternative states, an immense 
number, corresponding to 1 million bits of informa-
tion. Indeed, the camera would respond differently 
to every possible image. Yet few would argue that 
the camera is conscious. What is the critical differ-
ence between a human being and a camera?
According to IIT, the difference has to do with 
information integration. From the point of view of 
an external observer, the camera may be considered 
as a single system with a repertoire of 21,000,000 states. 
However, the chip is not an integrated entity: since 
its 1 million photodiodes have no way to interact, 
each photodiode performs its own local discrimina-
tion between a low and a high current, completely 
independent of what every other photodiode might 
be doing. In reality, the chip is just a collection of 1 
million independent photodiodes, each with a reper-
toire of 2 inputs and outputs – there is no intrinsic 
point of view associated with the camera chip as a 
whole. This is easy to see: if the sensor chip were 
cut into 1 million pieces each holding its individual 
photodiode, the performance of the camera would 
not change at all.

By contrast, a human distinguishes among a vast 
repertoire of alternatives as a single, integrated sys-
tem, one that cannot be broken down into indepen-
dent components each with their own separate rep-
ertoire. Phenomenologically, every experience is an 
integrated whole, one that means what it means by 
virtue of being one, and which is experienced from 
a single point of view. For example, no matter how 
hard I try, experiencing the full visual field cannot 
be reduced into experiencing separately the left half 
and the right half. No matter how hard I try, I cannot 
reduce the experience of a red apple into the sepa-
rate experience of its color and its shape. Indeed, 
the only way to split an experience into independent 
experiences seems to be splitting the brain in two, as 
in patients who underwent the section of the corpus 
callosum to treat severe epilepsy (Gazzaniga, 2005). 
Such patients do indeed experience the left half 
of the visual field independently of the right side, 
but then the surgery has created two separate con-
sciousnesses instead of one. Therefore, underlying 
the unity of experience must be causal interactions 
among certain elements within the brain. This means 
that these elements work together as an integrated 
system, which is why, unlike the camera, their per-
formance breaks down if they are disconnected.

The internet thought experiment

Unlike the camera chip, the internet is obviously 
integrated – in fact, its main purpose is to permit 
exchanges of messages between any point of the 
net and any other point. It can also be used to dis-
seminate or ‘broadcast’ messages from any one 
node to many others. The integration is achieved by 
routers that act as dynamic switches connecting any 
address in the network with any other address. And 
yet it seems unlikely that, at least in its current form, 
the internet is giving rise to some kind of globally 
integrated consciousness. What could be the critical 
difference between the network of neurons inside 
the brain that gives rise to human consciousness, and 
the network of internet routers connecting devices 
throughout the world?
According to IIT, the difference has to do with the 
fact that the neural substrate of consciousness is 
wired to achieve maxima of integrated information, 
whereas the internet is not. Consider the internet first. 
The internet is not designed to achieve a maximum 
of integrated information, but to ensure point to point 
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communication. Indeed, interactions within the inter-
net can typically be reduced to independent compo-
nents, and they better be independent, otherwise there 
would be a chaotic cross-talk and point-to-point com-
munication would not be possible. In other words, the 
ability to obtain independent, point-to-point signaling 
excludes the ability to perform global computations, 
and vice versa. Thus, the internet, while integrated 
enough to permit point-to-point signaling, is certainly 
not maximally integrated – not from the intrinsic 
perspective of the internet itself. On the other hand, 
from the perspective of an external user, this has 
great advantages. For example, from a particular 
node, say the terminal of an information technologist, 
one can access without any cross-talk a connected 
hand-held device to diagnose exactly what the speech 
recognition module is doing or why it may be mal-
functioning; or how the power regulating circuits are 
performing; or one can access a connected peripheral, 
say a printer, to diagnose if it is running properly; or 
access anybody else’s computer and check any aspect 
of its functioning; and so on for any other connected 
device. Moreover, one can check the computations of 
any connected node at a range of spatial and temporal 
scales, from the operations performed by individual 
transistors at microsecond resolution to daily aver-
ages of traffic over a hub. However, the price of such 
complete access is that the internet is not well suited, 
at least in its current form, to achieve what one may 
call ‘global’, autonomous computations.
By contrast, within consciousness information is 
maximally integrated: every experience is whole, 
and the entire set of concepts that make up any par-
ticular experience – what makes the experience what 
it is and what it is not – are maximally interrelated. 
This integration is excellent for a context-dependent 
understanding of a particular state of affairs, but 
the flip side of maximal information integration is 
exclusion. No matter how hard I try, I cannot become 
conscious of what is going on within the modules in 
my brain that perform language parsing: I hear and 
understand an English sentence, but I have no con-
scious access to how the relevant part of my brain 
are achieving this computation, although of course 
they must be connected to those other parts that give 
rise to my present consciousness. Similarly, I have 
no conscious access to those other parts of my brain 
that are in charge of blood pressure regulation; or 
to the complex computations in the cerebellum that 

help maintain my posture. And I certainly do not 
have access to whatever is going on in peripheral 
organs in my body, such as the liver, the kidneys 
and so on. Furthermore, while I can interact with 
other people, I have no access to their internal work-
ings. Exclusion applies also within consciousness: 
at any given time, there is only one consciousness 
– one maximally integrated subject – me – hav-
ing one full experience, not a multitude of partial 
consciousnesses, each experiencing a subset of the 
contents of my experience. Instead, each experience 
is compositional, i.e. structured – it is constituted 
of different aspects in various combinations: I see 
the shape of the apple, I see its red color, I see a 
position in space, and I also see that the apple is red 
and occupies that position. Exclusion also occurs in 
spatio-temporal terms: what I experience, I experi-
ence at a particular spatial and temporal resolution: I 
have no way to experience directly processes within 
my brain – even within the parts that are involved in 
generating experience – that happen at a much finer 
spatial grain, such as the workings of molecules and 
atoms within neural cells, or at a much finer tem-
poral grain, such as the millisecond-by-millisecond 
traffic of spikes among neurons. Similarly, I cannot 
experience events at a coarser spatial or temporal 
scale: for example, no matter how hard I try, I can-
not lump together into a single experience an entire 
movie, a waking day, or a lifetime: there is a “right” 
time scale at which consciousness flows – at other 
time scales, consciousness simply does not exist.

Phenomenological axioms, 
ontological postulates, and identities

Based on the intuitions provided by these thought 
experiments, the main tenets of IIT can be presented 
as a set of phenomenological axioms, ontological 
postulates, and identities. The central axioms, which 
are taken to be immediately evident, are as follows:

An initial axiom is simply that consciousness exists. 
Paraphrasing Descartes, “I experience therefore I 
am”2.

Another axiom concerns compositionality: experi-
ence is structured, consisting of multiple aspects in 
various combinations. Thus, even an experience of 
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pure darkness and silence contains visual and audi-
tory aspects, spatial aspects such as left center and 
right, and so on.

A central axiom concerns information: experience 
is informative or specific – in that it differs in its 
particular way from other possible experiences. 
Thus, an experience of pure darkness and silence 
is what it is by differing, in its particular way, from 
an immense number of other possible experiences – 
including the experiences triggered by any frame of 
any possible movie.

Another axiom concerns integration: experience is 
integrated – in that it cannot be reduced to inde-
pendent components. Thus, experiencing the word 
“SONO” written in the middle of a blank page can-
not be reduced to an experience of the word “SO” at 
the right border of a half-page, plus an experience 
of he word “NO” on the left border of another half-
page – the experience is whole.

Yet another axiom is exclusion: experience is exclu-
sive – in that it has definite borders, temporal, and 
spatial grain. Thus, an experience encompasses 
what it does, and nothing more; at any given time 
there is only one of its having its full content, it 
flows at a particular speed, and it has a certain reso-
lution such that certain distinctions are possible and 
finer or coarser distinctions are not.

To parallel the phenomenological axioms, IIT posits 
some ontological postulates:

An initial postulate is simply that mechanisms in a 
state exist. That is, there are operators that, given an 
input, produce an output, and at a given time such 
operators are in a particular state.

Another postulate concerns compositionality: mech-
anisms can be structured, forming higher order 
mechanisms in various combinations.

A central postulate concerns information: from the 
intrinsic perspective of a system, a mechanism in a 
state generates information only if it has both selec-
tive causes and selective effects within the system 
– that is, the mechanism must constitute “a differ-
ence that makes a difference within the system”. This 

intrinsic, causal notion of information can be assessed 
by examining the cause-effect repertoire (CER) speci-
fied by a mechanism in a state – the set of past system 
states that could have been the causes of its present 
state and the set of future system states that could 
have been its effects. If a mechanism in a state does 
not specify either selective causes or selective effects 
(for example by lacking inputs or outputs), then the 
mechanism does not generate any cause-effect infor-
mation (CEI) within the system. Ontologically, the 
information postulate claims that, from the intrinsic 
perspective of a system, only differences that make a 
difference within the system exist.

Another postulate concerns integration: a mecha-
nism in a state generates integrated information 
only if it cannot be partitioned into independent 
submechanisms. That is, the information generated 
within a system should be irreducible to the infor-
mation generated within independent sub-systems 
or independent interactions. Integrated information 
(ϕ) can be captured by measuring to what extent the 
information generated by the whole differs from the 
information generated by its components (minimum 
information partition MIP). Ontologically, the inte-
gration postulate claims that only irreducible inter-
actions exist intrinsically, i.e. in and of themselves.

Yet another postulate concerns exclusion: a mecha-
nism in a state generates integrated information 
about only one set of causes and effects – the one 
that is maximally irreducible. That is, the mecha-
nism can specify only one pair of causes and effects. 
By a principle of causal parsimony, this is the pair 
of causes and effects whose partition would produce 
the greatest loss of information. This maximally 
irreducible set of causes and effects is called a con-
cept. Exclusion can be captured by measuring the 
maximum of integrated information max

ϕMIP over all 
possible cause-effect repertoires of the mechanism 
over the system. Ontologically, the exclusion postu-
late claims that only maximally irreducible entities 
exist intrinsically3.

As will be discussed below, the postulates can be 
applied to subsets of elements within a system (mech-
anisms) as well as to systems (sets of concepts). A 
system of elements that generates cause-effect infor-
mation (it has concepts), is irreducible (it cannot be 
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split into mutually independent subsystems), and is 
a local maximum of irreducibility (in terms of the 
concepts it generates) over a set of elements and over 
an optimal spatio-temporal grain of interactions, con-
stitutes a complex – a maximally irreducible entity. 
In this view, only complexes are entities that exist 
intrinsically, i.e. in and of themselves.

Finally, IIT posits identities between phenomeno-
logical aspects and informational/causal aspects of 
systems. The central identity is the following: an 
experience is a maximally integrated conceptual 
information structure. Said otherwise, an experience 
is a “shape” or maximally irreducible constellation 
of concepts in qualia space (a quale), where qualia 
space is a space spanned by all possible past and 
future states of a complex. In this space, concepts 
are points in the space whose coordinates are the 
probabilities of past and future states corresponding 
to maximally irreducible cause-effect repertoires 
specified by various subsets of elements.

In what follows, the postulates of IIT are briefly 
illustrated by considering a set of mechanisms (a 
candidate system of elements). Within the system, 
the postulates are the first applied to mechanisms in a 
state, alone or in combination (all subsets), to identify 
concepts; then the postulates are applied to different 
systems of elements and the collection of concepts 
they generate, in order to identify complexes4.

Information
The information postulate says that information is a 
difference that makes a difference from the intrinsic 
perspective of a system. This intrinsic, causal5 notion 
of information is assessed by considering if the 
present state of a mechanism can specify both past 
causes and future effects within the system.

Within a system X, consider a subset of elements S 
in its present state s6. The information s generates 
about some subset of elements of X in the past (P) is 
the effective information (EI) between P and s:

EI (P | s) = D [(P | s), PHmax]

where D indicates the difference between two dis-
tributions, in this case between the distribution of 
P states that could have caused s given its present 

mechanism and state (the cause repertoire CR), 
and the maximum uncertainty (entropy) distribu-
tion PHmax, in which all P outputs are equally likely 
a priori7. Thus, EI(P|s) represents the differences 
in the past states of P that that can be detected by 
mechanism S in its present state s. Similarly, D 
between the distribution of F states that would be 
the effect of ‘fixing’ mechanism S in its present state 
s (the effect repertoire ER) and the distribution of 
states of F in which all F inputs are equally likely 
(FHmax), is the effective information s generates about 
future states of F:

EI (F | s) = D [(F | s), FHmax]

Thus, EI(F|s) represents the differences to the future 
states of F made by mechanism S being in its present 
state s. Clearly, EI(P|s) > 0 only if past states of P 
make a difference to s, and EI(F|s) 0 only if s makes 
a difference to F.
Based on the information postulate, a mechanism in 
a state (s) generates information from the intrinsic 
perspective of a system only if it both detects differ-
ences in the past states of the system and it makes 
a difference to its future states. That is, s generates 
information only if it has both selective causes 
(EI(P|s) > 0) and selective effects (EI(F|s) > 0). The 
minimum of the two, which represents the ‘bottle-
neck’ in the channel between past causes over P and 
future effects over F as mediated by the mechanism 
S in its present state s, is called cause-effect informa-
tion (CEI):

CEI(P, F | s) = min [ EI (P | s), EI (F | s) ]

Clearly, CEI > 0 only if the system’s states make 
a difference to the mechanism, and the state of the 
mechanism makes a difference to the system. Thus 
an element that monitors the state of the system (say 
a parity detector), but has no effects on the system, 
may be relevant from the extrinsic perspective of an 
observer, but is irrelevant from the intrinsic perspec-
tive of the system, as it makes no difference to it. If 
CEI > 0, the cause and effect repertoires together can 
be said to specify a cause-effect repertoire (CER).
As an example, consider a mechanism A within an 
isolated system ABC (Fig. 1). The wiring diagram 
is unfolded into a directed acyclic graph over past, 
present, and future. A’s mechanism is a logical AND 
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gate of elements B and C, turning ON if both B and 
C are ON; moreover, if A is ON, it turns OFF B. 
Thus, A specifies that, starting from the eight possi-
ble past states of elements ABC (maximum entropy 
distribution), only two past outputs of ABC can lead 
to A’s present state (ON) – those in which B and C 
are both ON (cause repertoire CR), thereby ‘detect-
ing differences’ and generating EI. Moreover, A 
specifies that, starting from maximum entropy over 
the inputs to ABC, A’s present state (ON) can only 
lead to four future states of ABC – those in which 
B is OFF (effect repertoire ER), thereby ‘making 
a difference’. Together, CR and ER specify the 
cause-effect repertoire CER = (ABC)

pa 
| A

pr
, (ABC)

fu 

| A
pr
 where the subscripts refer to present, past, and 

future. The cause-effect information (CEI) gener-
ated by a mechanism over its cause-effect repertoire 
(CER) is the minimum between EI [(ABC)

pa 
| A

pr
 ] 

and EI [(ABC)
fu 

| A
pr
 ].

Integration
The integration postulate says that information is 
integrated if it cannot be partitioned into indepen-
dent components. That is, a mechanism in state 
generates integrated information only if it cannot be 
partitioned into submechanisms with independent 

causes and effects. This integrated (irreducible) 
information is quantified by ϕ (small phi), a measure 
of the difference D between the repertoire specified 
by a whole and the product of the repertoires speci-
fied by its partition into causally independent com-
ponents. The difference is taken over the partition 
that yields the least difference from the whole (the 
minimum information partition (MIP)), i.e. ϕMIP8.

Consider a partition / that splits the interactions 
between P and S into independent interactions 
between parts of P and parts of S9, which can be 
done by ‘injecting’ noise (Hmax) in the connections 
among them. One can then measure the difference D 
between the unpartitioned cause repertoire CR and 
the partitioned CR. For the partition that minimizes 
D, known as minimum information partition (MIP), 
the difference D is called ϕ (small phi). The same 
holds for the difference D between the unpartitioned 
and partitioned effect repertoire ER:

ϕMIP (P | s) = D [(P | s), ∏ (P | s / MIP) ];
ϕMIP (F | s) = D [(F | s), ∏ (F | s / MIP) ]

Thus, ϕMIP(P|s) is the ‘past’ integrated (irreducible) 
information, and ϕMIP(F|s) is the ‘future’ integrated 

Fig. 1. - A cause-effect repertoire (CER) and the cause-effect information it generates (“differences that make a 
difference”). See text for explanation.
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(irreducible) information. Clearly, ϕMIP(P|s) > 0 only 
if the past states of P make a difference to s that can-
not be reduced to differences made by parts of P on 
parts of s, and likewise for ϕMIP(F|s) > 0.
Based again on the information postulate, a mecha-
nism in a state (s) generates integrated information 
from the intrinsic perspective of a system only if this 
information is irreducible both in the past and in the 
future. That is, s generates integrated information 
only if it has both irreducible causes (ϕMIP(P|s) > 0) 
and irreducible effects (ϕMIP(F|s)>0). The minimum 
of the two, which represents the ‘bottleneck’ in the 
channel between the past P and the future F as medi-
ated by the mechanism S in its present state s, is 
called ‘cause-effect’ integrated information:

ϕMIP (P, F | s) = min [ϕMIP (P | s), ϕMIP (F | s)]

As an example, Fig. 2a shows a set of 4 elements 
ABCD, where A is reciprocally connected to B and 
C is reciprocally connected to D. The wiring dia-
gram is again unfolded into a directed acyclic graph 
over past, present, and future. Consider now the 
cause repertoire (ABCD)

pa
 | (ABCD)

pr 
and a partition 

between subsets of elements AB on one side and CD 

on the other side: ϕMIP (P | s) = (ABCD)
pa

 | (ABCD)

pr
 || (AB)

pa
 | (AB)

pr 
x (CD)

pa
 | (CD)

pr 
= 0. Similarly 

for the effect repertoire, ϕMIP (F | s) = (ABCD)

fu
 | (ABCD)

pr
 || (AB)

fu
 | (AB)

pr
 x (CD)

fu
 | (CD)

pr 
= 

0. Thus, as expected, for this partition ϕMIP = min 
[ϕMIP (P | s), ϕMIP (P | s)] = 0. That is, considering the 
‘whole’ CER specified by (ABCD)

pa
 | (ABCD)

pr 
and 

(ABCD)
fu

 | (ABCD)
pr
 adds nothing compared to con-

sidering the independent ‘partial’ CER specified by 
(AB)

pa
 | (AB)

pr, 
(AB)

fu
 | (AB)

pr 
and by (CD)

pa
 | (CD)

pr
, 

(CD)
fu

 | (CD)
pr
. In other words, there is no reason to 

maintain that the ‘whole’ CER ABCD exists in and 
of itself, as it makes no difference above and beyond 
the two partial CER AB and CD. Thus, searching for 
partitions among sets of elements yielding ϕMIP = 0 
enforces a principle of causal parsimony.
As another example, consider a partition between 
interactions. The system depicted in Fig. 2b is such 
that A copies B and B copies A. For the cause-rep-
ertoire CR of AB and its partition into independent 
interactions of A with B and B with A one has that 
ϕMIP (P | s) = (AB)

pa
 | (AB)

pr
 || (B)

pa
 | (A)

pr 
x (A)

pa
 | 

(B)
pr 

= 0, and similarly for the effect repertoire ER. 
That is, the CER of AB over AB (written AB/AB) 
reduces without loss to the independent CER of A/B 

Fig. 2. - Integrated information generated by an irreducible CER, as established by performing partitions. See text 
for explanation.



	 Integrated information theory of consciousness: an updated account	 301

and B/A both in the past and in the future. Thus, 
there is no reason to maintain that the CER AB/
AB exists in and of itself, as it makes no difference 
above and beyond the independent CER of A/B and 
B/A. Again, searching for partitions among interac-
tions yielding ϕMIP = 0 enforces a principle of causal 
parsimony.
By contrast, consider a system in which A is a lin-
ear threshold unit that receives strong inputs from 
B and C, which if both ON are sufficient to turn A 
ON, and a weak input from D; and in which A has 
strong outputs to B and C (it turns both ON), and a 
weak output to D (Fig. 2c). Considering the CR of 
A/BCD, one has that its partition A/BC x D/[] ([] 
indicates the empty set) yields ϕMIP > 0, and the same 
holds for the ER. Thus, this CER is irreducible, 
since there is no way to partition it without losing 
some information – in this case some information 
about element D.

Exclusion
The exclusion postulate says that integrated infor-
mation is about one set of causes and effects only – 
those that are maximally irreducible – other causes 
and effects are excluded. That is, a mechanism in a 
state can specify only one pair of causes and effects, 
which, by a principle of causal parsimony, is the 
one whose partition would produce the greatest loss 
of information. This maximally irreducible set of 
causes and effects (MICE) is called a concept or, for 
emphasis, a “core concept”.

For a given subset of elements S in a present state 
s, there are potentially many cause repertoires CR 
depending on the particular subset P one considers 
(within system X). Exclusion states that, at a given 
time, s can have only one CR – which is the one 
having the maximum value of ϕMIP (

max
ϕMIP), where 

the maximum is taken over all possible subsets P 
within the system10. The corresponding CR is called 
the core cause of s within X. Similarly, the effect 
repertoire ER having 

max
ϕMIP over all possible sub-

sets F within the system is called the core effect of 
s within X.
Based again on the information postulate, a mecha-
nism in a state (s) generates integrated information 
from the intrinsic perspective of a system only 
if this information is maximally irreducible both 
in the past and in the future. That is, s generates 

maximally integrated information only if it has 
both maximally irreducible causes (

max
ϕMIP(P|s) > 

0) and maximally irreducible effects (
max

ϕMIP(F|s) > 
0). The minimum of the two, which represents the 
‘bottleneck’ in the channel between the past P and 
the future F as mediated by the mechanism S in its 
present state s, is called ‘cause-effect’ maximally 
integrated information:

max
ϕMIP (P, F | s) = min [

max
ϕMIP (P | s), 

max
ϕMIP (F | s) ]

The cause-effect repertoire of s that has 
max

ϕMIP 

(P,F|s) within a system X is called a concept. Thus, 
from the intrinsic perspective of a system, a concept 
is a maximally irreducible set of causes and effects 
(MICE) specified by a mechanism in a state.
For example, in Fig. 3 the powerset of CER (or ‘pur-
views’) of subset A within system ABCD includes, 
for the cause repertoires, A/A; A/B; A/C; A/D; A/
AB; A/AC; A/AD; A/BC; A/BD; A/CD; A/ABC; 
A/ABD; A/ACD; A/BCD; A/ABCD. Of these, the 
partition A/BC || A/B x []/C = 

max
ϕMIP turns out to 

be maximal (Fig. 3b), higher for example than the 
partition in Fig. 3a (A/BCD || A/BC x []/D). This is 
because partitioning away element B (or A) loses 
much more integrated information than any other 
partition. A similar result is obtained for the pow-
erset of partitions of A/ABCD for the effect rep-
ertoires. By the exclusion postulate, only one CER 
exists – the one made of the maximally irreducible 
CR and ER – excluding any other CER11.
The reason to consider exclusively the CER with 

max
ϕMIP is as before a principle of causal parsi-

mony – more precisely, a principle of least reduc-
ible reason. Consider A being ON in the previous 
example: it specifies a cause repertoire, but cannot 
distinguish which particular cause was actually 
responsible for its being ON; and with respect to its 
effects, it makes no difference which cause turned 
A ON. Since the particular cause does not matter, 
the exclusion postulate enforces causal parsimony, 
defaulting to the maximally irreducible set of causes 
for A being ON. These least ‘dispensable’ and thus 
most likely ‘responsible’ causes can be called the 
‘core’ causes for A being ON, in the sense that 
their elimination would have made the most differ-
ence12 13. In turn, the fact that A is ON also specifies 
a forward repertoire of possible effects, but once 
again A should be held most responsible only for its 
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maximally irreducible or ‘core’ effects: the effects 
for which A being ON is least dispensable, meaning 
that eliminating A’s output would have made the 
most difference14.

Concepts

A concept or ‘core’ concept thus specifies a max-
imally irreducible cause-effect repertoire (CER) 
implemented by a mechanism in a state. Within a 
concept, one can distinguish a core cause – the set of 
past input states (cause repertoire CR) constituting 
maximally irreducible causes of the present state of 
the mechanism; and a core effect – the set of future 
output states (effect repertoire ER) constituting 
maximally irreducible effects of its present state. 
For example, an element (or set of elements) imple-
menting the concept “table”, when ON, specifies 
‘backward’ the maximally irreducible set of inputs 
that could have caused its turning ON (e.g. seeing, 
touching, imagining a table); ‘forward’, it specifies 
the set of outputs that would be the effects of its 
turning ON (e.g. thinking of sitting at, writing over, 
pounding on a table)15.

As an example, consider the system in Fig. 4, whose 
wiring diagram is on the left. The middle panel 
shows the four concepts generated by the system, 
with their maximally irreducible cause-effect reper-
toires and the corresponding 

max
ϕMIP. For the concept 

generated by all three elements (ABC, top row) the 
figure also shows the product repertoires generated 
by the minimum information partitions of its maxi-
mal cause and effect repertoires.
For a given set of elements, it is useful to consider 
concepts as points within a space (concept space) 
that has as many axes as the number of possible past 
and future states of the set (Fig. 4, right panel; the 
axes are depicted along a circle but should be imag-
ined in a high-dimensional space; the points are indi-
cated as stars). Each concept specifies a maximally 
irreducible CER, which is a set of probabilities over 
all possible past and future states, and these prob-
abilities specify a particular point in concept space 
(more precisely, since probabilities must sum to 1, 
in the subspace given by the corresponding concept 
simplex). The concept ‘exists’ with an ‘intensity’ 
given by 

max
ϕMIP, that is, its degree of irreducibility 

(shown by the size of the star).

Fig. 3. - Maximally integrated information generated by a maximally irreducible CER over all possible CER specified 
by a subset of elements within a system. See text for explanation.
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It is thus possible to evaluate the overall constellation 
of concepts generated by the set of elements in a sin-
gle concept space, which can be called a conceptual 
information structure C. Among the relevant features 
one can consider are: i) the intensity, i.e. irreducibil-
ity 

max
ϕMIP of existing concepts; ii) the “shape” of the 

constellation of concepts in concept space; iii) the 
dimensionality of the sub-space spanned by all the 
concepts; iv) the scope of the subspace covered by 
the concepts; v) the scope of the subspace covered by 
the concepts weighted by their intensity16 17.

Complexes

By considering the conceptual information structure 
C (“constellation” C) specified in concept space by 
all the concepts generated by a system (Fig. 4), the 
postulates of IIT can be applied not only to find the 
maximally irreducible CER of a subset of elements 
(concepts), but also to find sets of elements, called 
complexes, which generate maximally integrated 
conceptual information structures. As with concepts, 
so with complexes, this can be done by: i) making 
sure, by partitioning the elements of a system, that 

the constellation of concepts generated by a set of 
elements cannot be reduced to the product of the 
constellations generated by the parts (integration 
postulate); ii) ensuring that the constellation of con-
cepts generated by one part of the system have both 
selective causes and selective effects in the other 
part (information postulate); iii) choosing the set of 
elements that generates the most irreducible constel-
lation of concepts (exclusion postulate).
As before, the irreducibility mandated by the inte-
gration postulate can be determined by measuring 
the difference D between the constellation of con-
cepts generated by the whole, unpartitioned set of 
elements s, and that generated after its partition P 
into parts:

ΦP→ (C | s) = D (C |s, C | s/P→);
ΦP← (C | s) = D (C |s, C | s/P←)

where the arrow next to P indicates a unidirectional 
partition, i.e. one that separates causes from effects 
across the parts by injecting noise in the connections 
going from one part to the other. Applying as before 
the information postulate, one has:

Fig. 4. - An integrated conceptual information structure. See text for explanation.
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ΦP (C | s) = min [ ΦP→ (C | s), ΦP← (C | s) ]

That is, one first partitions across the inputs (causes) 
to one side of the partition (i.e. the outputs or effects 
from the other side), then the other way around, and 
one takes the minimum across the partition. Finally, 
as before, one finds the partition for which ΦP (C | 
s) reaches its minimum value, ΦMIP (C | s), where 
MIP is the minimum information partition, and ΦMIP 

stands for integrated conceptual information. Thus, 
if ΦMIP (C | s) >0, no partition can divide the system 
into non-interacting, mutually independent parts. 
Moreover, the greater the value of ΦMIP, the more 
irreducible the constellation of concepts generated 
by a particular set of elements18. Finally, according 
to the exclusion postulate, out of many possible con-
stellations of concepts generated by overlapping sets 
of elements only one exists: the one that is maximal-
ly irreducible. Thus, one needs to evaluate ΦMIP for 
all sets of elements s, i.e. s = A, B, C, AB, AC, BC, 
ABC19. The set of elements generating the constel-
lation with the maximum value of ΦMIP (

max
ΦMIP, or 

maximally integrated conceptual information) con-
stitutes the main complex within the overall system; 
the corresponding concept space (simplex) is called 
qualia space, and the constellation of concepts it 
generates – the maximally integrated conceptual 
(information) structure – is called a quale Q20.
For example, an exhaustive analysis of the system 
in Fig. 4 shows that the full set ABC constitutes a 
complex, as no other set of elements yields inte-
grated conceptual structures having a higher value 
of ΦMIP. In larger systems, one would first identify 
the main complex and then, recursively, identify 
other complexes among the remaining elements. 
Therefore, a complex can be defined as a set of ele-
ments generating a maximally irreducible constella-
tion of concepts (a maximally integrated conceptual 
structure). In essence, then, just like a concept speci-
fies a particular, maximally integrated distribution 
of system states out of possible distributions (a point 
in concept space), a complex specifies a particular, 
maximally integrated conceptual structure (constel-
lation of points) out of possible conceptual struc-
tures in concept space. As indicated by the informa-
tion axiom, that constellation differs in its particular 
way from other possible constellations.
A schematic representation of a reduction of a sys-
tem into complexes plus the residual interactions 

among them is illustrated in Fig. 5a. Note, for exam-
ple, that due to the exclusion postulate, although 
complexes can interact, they cannot overlap. Thus, 
when two complexes of high 

max
ΦMIP interact weak-

ly, their union does not constitute a third complex, 
even though its ΦMIP value may be > 0: once again, 
there is no need to postulate additional entities, 
because they would make no further difference 
beyond what is accounted by the two complexes of 
high 

max
ΦMIP plus their weak interactions21. This is a 

direct application of Occam’s razor: “entities should 
not be multiplied beyond necessity”22. We recognize 
this principle intuitively when we talk to each other: 
most people would assume that there are just two 
consciousness (complexes of 

max
ΦMIP) that interact 

a little, and not also a third consciousness (complex 
of lower ΦMIP) that includes both speakers. In sum-
mary, a complex is an individual, informationally 
integrated entity that is maximally irreducible: i) it 
cannot be partitioned into more integrated parts; ii) 
it is not part of a more integrated system; iii) it is 
separated through a boundary from everything exter-
nal to it (it excludes it). In this view, any system of 
elements ‘condenses’ into distinct, non-overlapping 
complexes that constitute local maxima of integrat-
ed conceptual information.

Optimal spatio-temporal grain
The exclusion postulate should be applied not only 
over sets of elements, but over different spatial and 
temporal scales. For any given system, one can 
group and average the states of several microele-
ments into states of a smaller number of macro-ele-
ments. Similarly, one can group and average states 
over several micro-intervals into longer macro-inter-
vals. For each spatio-temporal grain, one calculates 
CER, concepts (maximally irreducible CER), and 
complexes (sets of elements generating maximally 
integrated conceptual structures). By the exclusion 
postulate, a particular set of elements, over a particu-
lar spatio-temporal grain, will yield the max value of 
ΦMIP, thereby excluding any overlapping subsets and 
spatio-temporal grains.
As an example, consider the brain: over which ele-
ments should one consider perturbations and the rep-
ertoire of possible states? A natural choice would be 
neurons, but other choices, such as neuronal groups 
at a coarser scale, or synapses at a finer scale, might 
also be considered, not to mention molecules and 
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atoms. Importantly, under certain circumstances, a 
coarser spatial scale (‘macro’-level) may produce 
a complex with higher values of ΦMIP than a finer 
scale (‘micro’-level), despite the smaller number of 
macro- compared to micro-elements. In principle, 
then, it should be possible to establish if in the brain 
consciousness is generated by neurons or groups 
of neurons. In this case the exclusion postulate 
would also mandate that the spatial scale at which 
ΦMIP is maximal, be it neurons or neuronal groups, 
excludes finer or coarser groupings: there cannot be 
any superposition of (conscious) entities at different 
spatio-temporal scales if they share informational/
causal interactions (Fig. 5b)23.
Similar considerations apply to time. Integrated 
information can be measured at many temporal 
scales. Neurons can choose to spike or not at a scale 

of just a few milliseconds. However, consciousness 
appears to flow at a longer time scale, from tens of 
milliseconds to 2-3 seconds, usually reaching maxi-
mum vividness and distinctness at a few hundred 
milliseconds (Fig. 5c). IIT predicts that, despite the 
larger number of neural ‘micro’-states (spikes/no 
spikes, every few milliseconds), ΦMIP will be higher 
at the level of neural ‘macro’-states (burst of spikes/
no bursts, averaged over hundreds of milliseconds). 
This is likely the case because a set of neurons 
widely distributed over the cerebral cortex can 
interact cooperatively only if there is enough time 
to set up transiently stable firing patterns (attractors, 
see below) by allowing spikes to percolate forward 
and backward. Again, the exclusion postulate would 
mandate that, whatever the temporal scale that maxi-
mizes ΦMIP, be it spikes or bursts, there cannot be 

Fig. 5. - Complexes: maxima of integrated conceptual information over elements, space, and time. In the left panel, 
the blue ovals represent several separate complexes, i.e. local maxima of maxΦ

MIP, each containing a schematic 
constellation, i.e. an integrated information structure comprising different concepts (stars). Each large blue oval – 
a main complex corresponding to an individual consciousness generated by a subset of neurons within the brain 
– is contained within a larger white oval that stands e.g. for the body, a system that does not constitute a complex 
and is thus not conscious. Inside the body, besides the main complex, are smaller complexes having very low 
maxΦ

MIP (only one shown) and presumably many smaller ones that are not represented. The curved lines represent 
interactions among parts of the body that remain outside individual complexes and thus outside consciousness. 
The large oval that encompasses both bodies indicates that the two consciousnesses interact within a larger sys-
tem that is again not a complex and is thus not conscious. The outer dashed oval stands for the immediate envi-
ronment. The right panels indicate that, within a system such as the brain, maxΦ

MIP will reach a maximum not only 
within a particular subset of elements but also at a particular spatio-temporal scale. See text for further explanation.
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any superposition of (conscious) entities evolving at 
different temporal scales if they share informational/
causal interactions24 25.

Identity between maximally 
integrated conceptual structures 
(qualia) and experiences

In summary, a particular set of elements at a par-
ticular spatio-temporal scale yielding a maximum of 
integrated conceptual information (

max
ΦMIP) consti-

tutes a complex, a ‘locus’ of consciousness. The set 
of its concepts – maximally irreducible cause-effect 
repertoires (

max
ϕMIP>0) specified by various subsets 

of elements within the complex – constitute a maxi-
mally integrated conceptual information structure 
or quale (Fig. 4) – a shape or constellation of points 
in qualia (concept) space26.
Having defined complexes and qualia, IIT posits 
identities between phenomenological and informa-
tional/causal aspects of systems. The central iden-
tity is the following: an experience is a maximally 
integrated conceptual (information) structure or 
quale – that is, a maximally irreducible constellation 
of points in qualia space. Tentative corollaries of 
this identity include the following: i) the particular 
‘content’ or quality of the experience is the shape 
of the maximally integrated conceptual structure in 
qualia space (the constellation of concepts); ii) a 
phenomenological distinction is a maximally irre-
ducible cause-effect distinction (a concept). In other 
words, unless there is a mechanism that can generate 
a maximally irreducible cause-effect repertoire (con-
cept) – a distinct point in the quale – there is no cor-
responding distinction in the experience the subject 
is having; iii) the intensity of each concept is its 

max
ϕ 

MIP value; iv) the ‘richness’ of an experience is the 
number of dimensions of the shape; v) the scope of 
the experience is the portion of qualia space spanned 
by its concepts; vi) the level of consciousness is the 
value of maximally integrated conceptual informa-
tion 

max
ΦMIP; vii) the similarity between concepts is 

their distance in qualia space, given the appropriate 
metric; viii) clusters of nearby concepts form modali-
ties and submodalities of experience; ix) the similar-
ity between experiences would be given by the simi-
larity between the corresponding shapes (see also the 
final section and Tononi, 2008, 2010), and so on.

In principle, then, given the “wiring diagram” and 
present state of a given system, IIT offers a way 
of specifying the maximally integrated conceptual 
structure it generates (if any)27. According to IIT, 
that structure completely specifies “what it is like to 
be” that particular mechanism in that particular state, 
whether that is a set of three interconnected logical 
gates in an OFF state; a complex of neurons within 
the brain of a bat spotting a fly through its sonar; or a 
complex of neurons within the brain of a human won-
dering about free will. In the latter examples, the full 
integrated conceptual structure is going to be extraor-
dinarily complex and practically out of reach: we are 
not remotely close to having the full wiring diagram of 
the relevant portions of a rodent or human brain; even 
if we did, obtaining the precise quale would be com-
putationally unfeasible28. Nevertheless, by comparing 
some overall features of the shapes of qualia generated 
by different systems or by the same system in different 
states, it should be possible to evaluate broad simi-
larities and differences between experiences. IIT also 
implies that, if a collection of mechanisms does not 
give rise to a single maximally integrated conceptual 
structure, but to separate qualia each reaching a maxi-
mum of integrated conceptual information, then there 
is nothing it is like to be that collection, whether it is 
an array of electronic circuits, a heap of sand, a swarm 
of bats, or a crowd of humans.

Matching
So far, the maximally integrated conceptual struc-
tures generated by a system of elements have been 
considered in isolation from the environment – as is 
the case for the brain when it dreams. But of course 
it is also essential to consider how integrated con-
ceptual structures are affected by the external world, 
especially since the mechanisms generating them 
become what they are through a long evolutionary 
history, developmental changes, and plastic changes 
due to interactions with the environment.

In any situation, a complex of high 
max

ΦMIP has at its 
disposal a large number of concepts – maximally 
irreducible cause-effect repertoires specified within 
a single conceptual structure. These concepts allow 
the complex to understand the situation and act in it 
in a context-dependent, valuable fashion. It would 
be helpful to have a measure that assesses how well 
the integrated conceptual structure generated by an 
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adapted complex fits the causal structure of the envi-
ronment. One way to do so is to define cause-effect 
matching (M) between a system and its environment 
as the difference between two terms, called Capture 
and Mismatch:

Matching = Capture – Mismatch

Capture is the minimum average difference <D> 
between the constellations C when a complex inter-
acts with its environment (C World), compared to 
when it is exposed to an uncorrelated, structureless 
environment (C Noise).

Capture = min < D [ C |s World, C |s Noise ] >

As before, D specifies a distance metric. Capture is 
an indication of how well the system samples the 
statistical structure of its environment (deviations 
from independence). Thus, high capture means that 
the system is highly sensitive to the correlations in 
the environment. The system can do so in two ways: 
on the input side, by sampling as many correlations 
as possible from the environment through a large 
sensory bandwidth and distributing these correla-
tions efficiently within the brain through a special-
ized connectivity (thereby reflecting to what extent 
World deviates from Noise, Tononi et al., 1996). 
On the output side, an organism can extract more 
information by actively exploring its environment 
or modifying it to better pick up correlations, aided 
by a rich behavioral repertoire (Tononi et al., 1999). 
Note that the minimum is taken because to match 
system constellations generated with World and 
with Noise one should pair them in such a ways as 
to minimize the overall difference.

Mismatch is the minimum average difference <D> 
between the constellations C when a complex inter-
acts with its environment (C World), compared to 
when it is dreaming (C Dream), that is, when it 
is disconnected from the environment both on the 
input and the output sides.

Mismatch = min < D [ C |s World, C |s Dream ] >

Mismatch is an indication of how well the system 
models the statistics of its environment. Thus, low 
mismatch means that the system’s causal informa-

tion structure generates a good intrinsic model of 
its input. Again, the system can do so in two ways: 
by modifying its own connections so they generate 
a correlation structure similar to that induced by 
the environment (the system’s Dream becomes a 
model of World). In this way ‘memories’ formed 
over a long time can help to disambiguate / fill in 
current inputs and, more generally, to predict many 
aspects of the environment (Tononi and Edelman, 
1997). Another way is to change the environment 
by exploring it or modifying it to make inputs match 
its own values and expectations (World is made to 
conform to the system’s ‘Dream’). In general, the 
interactions with the environment would have to 
match specific cause repertoires with specific effect 
repertoires in a way that yields perception-action 
cycles of high adaptive value: in short, the ‘right’ 
cause should lead to the ‘right’ effect

Note that the balance between the two terms in the 
expression for matching has two useful consequenc-
es: maximizing Capture ensures that the system 
does not minimize Mismatch simply by disconnect-
ing from World. Conversely, minimizing Mismatch 
ensures that the system does not maximize Capture 
simply by becoming sensitive to the correlations 
in its input from World without developing a good 
generative model.

Importantly, since within a given system it is likely 
that similar states yield similar constellations, a 
simpler expression for matching can be obtained by 
considering differences between the probability dis-
tribution of system states S, rather than differences 
between sets of constellations C:

M = D [S World, S Noise] – D [S World, S Dream]

(note that, while the above expression is based on 
the distribution of system states, in principle the 
notion of matching can also be applied to the distri-
bution of sequences of system states).

In the course of evolution, development, and learn-
ing, one would expect that the mechanisms of a 
system change in such a way as to increase match-
ing. Capture should increase because, everything 
else being equal, an organism that obtains more 
information about the structure of the environment 
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is better off than one that obtains less informa-
tion29. By contrast, mismatch should decrease since, 
everything else being equal, an organism having 
an internal generative model that matches well the 
overall causal structure of the environment is better 
off than one that is at the mercy of what happens here 
and now. Moreover, since high matching requires 
a large difference between cause-effect repertoires 
in the C-World and C-Noise conditions (capture), 
to optimize M a system should have many different 
concepts, i.e. have high 

max
ΦMIP. Put differently, large 

integrated conceptual structures, if well matched to 
the environment, provide a broad context to under-
stand a situation and to plan an appropriate action30. 
If high M requires high <

max
ΦMIP>, it follows that an 

increase in matching will tend to be associated with 
an increase in information integration and thus with 
an increase in consciousness. Finally, one would 
expect that the growth of matching and the associated 
growth of consciousness would also be a function of 
the complexity of the causal structure of the environ-
ment itself. In environments where survival can be 
achieved trusting on the efficient execution of nearly 
independent functions each with a narrow domain, 
context-dependency would not play a large role, and 
an organism would not need to achieve high values of 
M and <

max
ΦMIP>. Conversely, rich environments that 

put a premium on context-sensitivity and memory, 
such as competitive social situations, should favor the 
evolution of organisms having high values of M and 
<

max
ΦMIP> (Albantakis et al., in preparation)31.

Further theoretical considerations

The framework presented above will certainly need to 
be expanded and refined. However, even in its current 
from, it can shed some light on some broad theoreti-
cal issues that assume critical relevance if one takes 
integrated information to be a fundamental, intrinsic 
feature of reality (Tononi, 2008)32. One of these con-
cerns the relationship between information and causa-
tion, another the potential advantages of systems with 
high capacity for information integration.

Information and causation
IIT assumes that mechanisms in a given state are 
intrinsically associated with certain maximally inte-
grated conceptual structures, which they specify irre-

spective of external observers. Each concept exists if 
and only if an underlying ‘causal’ mechanisms is in 
working order and can ‘choose’ among alternatives, 
that is, select particular cause-effect pairs from past 
to future states that are compatible with its present 
state. Moreover, a concept exists if and only if it is 
maximally irreducible to subconcepts. Finally, an 
integrated conceptual structure itself only exists if 
it constitutes a maximum of integrated conceptual 
information over elements, space, and time.
From these premises, it is worth considering more 
closely the relationship between information and 
causation. Causation has often been interpreted as 
a correlation between successively observed events, 
as pointed out by David Hume: by observing that 
event 1 is reliably followed by event 8, we infer 
that 1 causes 8. This view of causation as strength 
(reliability) of a correlation is akin to the traditional 
view of information from the extrinsic perspective, 
as in Shannon’s formulation, where a correlation 
between 1 and 8 means that one event carries infor-
mation about the other (mutual information). Some 
more recent formulations, such as transfer entropy, 
impose the additional criterion of the directionality 
of prediction. However, it would seem that, to assess 
causation, it is not enough to observe a system, but 
it is necessary to perturb it and see what happens. 
In this vein, Judea Pearl has developed an interven-
tional or perturbation-based model of causation: for 
instance, one does not merely observe the sequence 
1,8, but one imposes input state 1 and sees whether 
event 8 is reliably observed (while the opposite may 
not be true). In this case one can conclude that 1 
caused 8, going beyond a mere correlation.
Conceptualizing causation properly also requires the 
consideration of counterfactuals, that is, what would 
have happened if instead of event 1 some other event 
had occurred. For instance, would effect 8 still have 
happened if, instead of imposing 1, one had imposed 
perturbation 2,3,4,5, and so on? If it turned out that 
the system always ends up in state 8, we would 
begin to think that 3 was not so much caused by the 
preceding state 1, but rather, that 8 was inevitable. 
In other words, it would seem that, the less a cause 
is selective, the less of a cause it is. Some further 
thought indicates that properly considering coun-
terfactuals ties the notion of causation even more 
closely with that of information, precisely because 
it implies selectivity. In the general case, it would 
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seem that one should consider all possible counter-
factuals. That is, one should perturb the system in all 
possible ways and see what this does. This is exactly 
what is done by measuring cause-effect informa-
tion (CEI) as defined above. CEI certainly depends 
on the reliability of the effects of a particular per-
turbation, as it decreases with noise. Cause-effect 
information also depends critically on selectivity: 
it is high if only some out of many past inputs can 
give rise to the present state of a mechanism and 
if this in turn can give rise to only some of many 
possible outputs33 34 35. It thus becomes apparent that 
the notion of causation, properly considered, is very 
similar to the intuitive idea of “difference that makes 
a difference”, which is precisely what is captured by 
measuring cause-effect information.
If cause-effect information can indeed capture that 
causation must be related to differences that make a 
difference, what is the relation between causation and 
integrated information – the extent to which cause-
effect information is irreducible, as established from 
the intrinsic perspective of a system? As was argued 
above, if a candidate cause-effect repertoire, as mea-
sured by CEI > 0, can be reduced to the product of 
independent components, as indicated by ϕMIP = 0, 
then there is no reason to posit its existence as an addi-
tional mechanism, because there are no further cause-
effects to be accounted for beyond those accounted 
for by component mechanisms. That is, true causation 
requires not only that CEI > 0, but also that ϕMIP > 0. In 
other words, if what might at first look like a genuine 
a cause-effect relationship can be completely reduced 
to independent components, it makes no further differ-
ence, and thus it has no causal power.
An even stricter notion of cause is imposed by con-
sidering the notion of maximal integrated information 
(

max
ϕMIP). As was also argued above, once an element 

is in a certain present state (say ON), from its intrinsic 
perspective it makes no difference which of the pos-
sible causes of its being ON may have occurred, so 
one can simply consider the maximally irreducible set 
of past causes and future effects (MICE) – those that 
make most of a difference. Based on the same notions 
one further identifies a set of elements – a complex 
– that specifies a maximally integrated information 
structure at an optimal spatio-temporal scale – one 
having 

max
ΦMIP. If such a local maximum of integrated 

information is indeed identical with consciousness, as 
claimed by IIT, it follows that a set of mechanisms 

in a state capable of generating consciousness also 
constitutes a local maximum of causal power. That is, 
consciousness itself is supremely causal36.
The equivalence between consciousness and a local 
maximum of information/causation also suggests 
that, since consciousness is exclusive (there is only 
one consciousness with certain contents included, 
others excluded, and flowing at a particular spatio-
temporal scale, given certain boundary conditions, 
causation itself may be exclusive: there is only one 
cause of any effect, the “core cause”, and causation 
within “causal complexes” of elements only occurs 
at one spatio-temporal scale – the one that is maxi-
mally causal. Exclusion applied to causation has the 
virtue of immediately resolving the paradoxes posed 
by multiple causation. For example, when search-
ing for the cause of an event (say, the pulling of a 
trigger), the cause should be found in the subset of 
elements that give rise to a maximum of integrated 
conceptual information with respect to the event (my 
conscious decision to pull the trigger). Any lesser 
cause (one that is less irreducible), including micro-
level causes (the molecules in my brain), or proxi-
mal causes (the muscles in the finger) are excluded. 
That is, one should not double-count causes, just like 
one should not double-count information (causes 
should not be multiplied beyond necessity)37.
Analyzing systems in terms of maxima of informa-
tion/causation over many spatio-temporal scales 
also helps to address issues related to the possibility 
of causal emergence. For example, it is generally 
assumed that in physical systems causation happens 
at the micro-level, that a macro-level supervenes 
upon the micro-level (it is fixed once the micro-level 
is fixed), and that therefore a macro-level cannot 
exert any further causal power. On the other hand, if 
it can be shown that information/causation reaches 
a maximum at a macro- rather than at a micro-level 
(see note 22), then by the exclusion postulate there is 
true causal emergence: the macro-level supersedes 
the micro-level and excludes it from causation38.

Concepts, questions, and qualia: Potential 
advantages of a maximally integrated 
conceptual structure over strictly modular 
structures
IIT suggests that a complex capable of generating a 
maximally integrated conceptual structure (a quale) 
should have some advantages over a collection of 
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independent modules. To gain some perspective on 
this issue, consider the system in Fig. 6, top. For 
simplicity, consider just 3 units (A,B,C) within a 
‘visual’ area V1. Then there are units in area V2 
that sample neighboring units in V1 and perform 
logical operations on the inputs (e.g. AND, XOR). 
In area V3 there are units that sample units of V2 
and have a larger receptive field, which may extend 
to the entire visual field, and which also perform 
various logical operations. We assume that the units 
are linked not only by forward connections, but also 
by back-connections that implement further logical 
operations. In addition, units are linked by various 
mechanisms of competitive inhibition. Finally, the 
system is organized at the micro-level in such a way 
that after reentrant interactions between the units in 
different areas, it can settle into a limited number of 
metastable ‘attractor’ states over a macro time scale 
(see section on attractor dynamics below), and at 
this time scale it constitutes a complex.
This extreme caricature of the organization of the 
visual system can nevertheless be helpful in thinking 

about the kind of quale such a system might possibly 
generate. Let us consider the portion of qualia space 
specified over the three units A,B,C within V1 by 
the rest of the complex, focusing for simplicity on 
cause repertoires only (Fig. 6, bottom). For example, 
an AND unit V2-A that receives from V1-A and 
V1-B specifies, if it fires, that sub-states having the 
contiguous units V1-A and V1-B ON are compat-
ible with its current state, and rules out all those 
states in which V1-A and V1-B were not both ON. 
Another unit in V2, the AND unit V2-B, specifies, 
if it is silent, that V1-B and V1-C could not possi-
bly be both ON, and so on for other units in V2. A 
unit in V3, unit V3-A, which implements an XOR 
function of units in V2, may instead specify, if it is 
ON, that one and only one of the AND units in V2 
must have been ON. Its firing then specifies a prob-
ability distribution over V1 that is compatible with 
any two contiguous units in V1 being ON together, 
but rules out many other firing patterns on V1. We 
can call this unit a position-invariant ‘segment’ unit. 
Similarly, a different logical function may yield a 

Fig. 6. - Schematic diagram of some of the concepts generated in a ‘toy’ visual system. Units that are ON are indi-
cated in grey. Note that only some repertoires in the quale are shown (corresponding to some of the concepts 
discussed in the text), projected over the sub-states of just 3 units in V1. See text for explanation.
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position invariant ‘dot’ unit in V3, which fires if 
there is an isolated unit ON in V1. And there can 
be a ‘line’ unit, which fires if three or more units in 
V1 are ON.
Let us consider just some of the cause repertoires 
over input units A,B,C in V1, ignoring the effect 
repertoires (Fig. 6, bottom). Concepts specified 
by V3 units are integrated over all 3 V1 units and, 
moreover, happen to correspond to invariants, such 
as dots, segments, and lines. By contrast, units in V2 
specify concepts that are more restricted as well as 
non-invariant, such as an AND of nearby locations. 
Furthermore, concepts specified on V1 can be both 
‘positive’ and ‘negative’. For example, a ‘segment’ 
unit firing specifies a probability distribution over 
V1 that is compatible with there being a ‘segment’; 
on the other hand a ‘dot’ unit that is silent also speci-
fies a distribution, which corresponds to the negative 
concept ‘not dot’ and is less sharp. Also, concepts 
can be specified by combinations (subsets) of units 
taken together, as long as what is specified cannot be 
reduced to simpler concepts. Such irreducible con-
cepts can be organized ‘vertically’ or ‘horizontally’. 
As an example of ‘vertical’ organization, the unit in 
V3 signaling that there is a segment, together with 
a unit in V2 signaling which particular neighbor-
ing pixels in V1 are ON, together specify that there 
is a ‘left segment’. Note that the V3 unit ‘knows’ 
that there must have been a segment, which is an 
important generalization, but does not know which 
particular one. By contrast, the V2 unit knows that 
its two inputs (on the left) are both ON, but it has 
no concept of a segment. Together, the V3 and V2 
units know both the general concept (segment) and 
its particular location (left) – a more selective and 
integrated concept: integrated, because it is predi-
cated on the entire input array, and maximally selec-
tive because it rules out all possible states except 
for V1-A = ON, V1-B = ON, V1-C = OFF. As an 
example of ‘horizontal’ organization, the segment 
unit in V3 knows that there is a segment, but it does 
not know that it is not a dot or a line, while another 
unit in V3 may know that there is no dot, but does 
not know about segments and lines. However, the 
segment, dot and line units together specify that 
there is a segment but not a dot or a line.
As is evident from this simple example, due to 
compositionality the number of possible concepts 
grows very rapidly with the number of elements in a 

complex39, even if one considers just the repertoires 
specified over a subset of elements, such as those 
receiving input from the environment.
Clearly, only a fraction of all possible concepts is 
likely to be useful in a given environment. Useful 
concepts will be those that are most informative 
about the environment because they match its sta-
tistical regularities over space and time (see above). 
Nevertheless, in a rich environment, the number of 
concepts that would be relevant is presumably not 
small. Most importantly, it is likely that concepts 
relevant to a given environment are related in vari-
ous ways – for instance, evidence indicating that a 
particular input is a segment also implies that it will 
not be a dot or a line; similarly if there is a segment, 
it will be either left or right. In these respects, it 
would seem that an integrated system (a complex), 
compared to a set of independent modules, may 
have some substantial advantages. Let us then con-
trast a complex, where many relevant concepts are 
implemented within a single, integrated conceptual 
structure (the quale), within a set of modules, where 
each relevant concept is implemented separately.

Economy of units/wiring and compositionality

A properly built complex, which can specify many 
different concepts using different combinations of 
the same units and connections, should be more 
economical than a collection of independent mod-
ules, where many (low-level) mechanisms would 
have to be duplicated. Within a complex, reciprocal 
(horizontal) inhibition between concepts helps to 
specify at once what an input is and what it is not. 
Also, high- and low-level concepts can be naturally 
combined (vertically) into hierarchical concepts 
(‘there is a segment’, ‘there are two contiguous 
pixels ON at the left’, can be combined to signal ‘a 
segment on the left’). Moreover, an integrated archi-
tecture makes it possible to specify a large number 
of concepts not only over the input units, but over 
any combination of internal units, which can be 
highly abstract, related to arbitrary combinations of 
memories, or purely imaginary and divorced from 
sensory evidence. Note that, while it is conceiv-
able to construct a system having only first order 
concepts, for example, in the extreme case, a neural 
network having 2n hidden units each turning ON for 
a different state out of the 2n states of n input units, 
and turning ON in turn a specific subset of output 
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units, such a system would be immensely expensive 
in terms of units and connections, it would have 
problems with adapting to a new environment, it 
would be extremely sensitive to noise, and so on. By 
contrast, a system exploiting compositionality (the 
powerset of 2n combinations of n units) would need 
just n hidden units to represent the same number of 
concepts over the input units, would save on connec-
tions, simplify learning, be more resistant to noise, 
and so on.

Relational architecture

In a quale, concepts can be thought of as arranged 
along the lattice given by the power-set of subsets 
of elements in the complex. Individual units specify 
elementary concepts. Then, in the context of the 
concept specified by a particular unit (say unit 
V3-A), another unit (say V3-B), further specifies the 
repertoire, sharpening the concept. In the context of 
the concept specified by units V3-A and V3-B, unit 
V2-A further specifies the repertoire and sharpens 
the concept even more, and so on. Each incremental 
specification over an increasingly richer context is 
captured by additional points in the quale, capturing 
the compositionality and nesting of concepts40. In a 
strictly modular system, the relational structure of 
concepts is not inherent in how the various concepts 
are organized. The segment detection module does 
not know that there is no dot, as it has no concept 
of dot. Nor does it know where the segment is. The 
module detecting the two left pixels ON does, but it 
does not know that it is a segment. Since there are 
no mechanisms to generate the relevant distributions 
from the interaction of different modules, one would 
need a dedicated module for each relevant reper-
toire, and there would be no way of keeping track of 
how they are related.

Questions and answers

Another way to see the difference between inte-
grated and modular systems is to consider questions 
and answers. It is useful to think of a question posed 
to a system as having a context and a specific query. 
Consider the question: “Is the segment on the left?” 
The context of a question, often implicit, refers to 
the assumptions that are necessary to ‘understand’ 
what the specific query is about. In the example of 
Fig. 6, the context includes the probability distribu-
tion compatible with ‘there is a segment’, in one of 

several positions, which is specified by unit V3-A. 
The specific query refers to the explicit issue at hand, 
here “Is the segment on the left?” It corresponds to 
the sharpening of the probability distribution of the 
context by further specifying “Are the left two pix-
els ON?” Clearly, a rich quale with many concepts 
implies that, at least in principle, the complex has 
at its disposal the answer to a very large number of 
questions, each of which can be put in the appropri-
ate context41. Again, strictly modular systems would 
need a separate module for every question in every 
context, which rapidly leads to a combinatorial 
explosion. Moreover, there is the issue of how ques-
tions can be routed to the appropriate modules and 
answers can be sampled from them.

Access

In this respect, the integrated conceptual structure 
of the quale can be useful for querying the appro-
priate subsets of units and sampling their state by 
exploiting the relational structure of the quale. For 
example, the question “Is the segment on the left?” 
say triggered through the auditory modality42, would 
be routed to unit V3-A (context) along connections – 
especially back-connections – that happen to be acti-
vated by the particular firing pattern the complex is 
in. The enhanced activation of V3 would then flow 
further to V2-A through activated back-connections. 
Finally, the enhanced activation of V2-A would 
exert differential effects elsewhere in the complex, 
eventually finding its way to output units primed for 
‘yes’ or ‘no’43.
A complex can be computationally very effective, 
since accessing specific subsets of units serving as 
sources or targets can be done through a roadmap 
of connections that is both far-reaching (every unit 
in a complex can be reached by any other unit) and 
specific (it is possible to selectively reach particular 
subsets of units). In other words, the very mecha-
nisms that allow a complex to generate many con-
cepts that represent questions and provide answers, 
and to understand a question in both its context and 
specific query, are what allows the complex to direct 
the question to access the appropriate repertoires 
cooperatively. None of this is possible in modular 
systems, as one would need a readout wired ad hoc 
to the particular conjunction of modules that contain 
the relevant information44.
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Learning

An integrated system would also be advantageous 
for learning. Briefly put, a hierarchical, integrated 
organization with feedback connections can help 
learning in stages. For example, early on, low-level 
stages can discover local features over a small search 
space, then help higher levels to extract invariants 
over a larger search space. Later on, high-level 
stages can help lower levels by priming them based 
on contextual information. Lateral interactions can 
serve a similar role. None of this cooperativity in 
learning is available to modular systems.

Substrate for selection

An integrated system embodying a large number of 
nested relationships offers an efficient substrate for 
selectional processes. Designing a system with mul-
tiple feedback loops and interactions is notoriously 
difficult from an engineering perspective, which 
explains why the standard engineering approach is 
to design largely independent modules, minimizing 
their coupling to avoid unintended consequences. 
On the other hand, natural selection, as well as pro-
cesses of neural selection (Edelman 1987), have no 
such qualms. Selectional processes can test count-
less integrated systems without regard for the com-
plexity of the interactions among the constituting 
elements and simply choose based on the results: 
systems that work are elaborated further, while sys-
tems that fail for whatever reason are discarded.

Economy of understanding/control and 
incompressibility

Lastly, and more speculatively, to the extent that 
a complex having high 

max
ΦMIP matches the causal 

structure of its environment, it can be argued that 
it would capture and ‘understand’ as well as ‘con-
trol’ that structure in a parsimonious manner that 
is informationally concise. This is because, first, 
the combinatorial organization of concepts in the 
quale permits to build a large relational structure 
based on a relatively small number of primitives. 
Second, if the environment’s causal structure is 
itself highly relational (compositional, nested, etc.), 
only a model that is itself highly relational can 
provide an explanatory/predictive structure that is 
informationally highly compressed (non-redundant). 
Since an evolved organism having high 

max
ΦMIP (and 

thus consciousness) would be sensitive to a large 

context of causal relationships in the environment, it 
should be more flexible than an organism equipped 
with a set of informationally separated processors, 
each of which has limited scope and understanding 
of the situation it finds itself in, which should make 
consciousness adaptive.

In summary, the integrated conceptual structure of 
the quale offers an economical way of assembling a 
large repertoire of different concepts, each applicable 
in many different contexts; ensures that concepts are 
arranged according to their relational structure; that 
they can easily be accessed accordingly; that many 
different concepts produce different effects on the 
system; and it facilitates learning, selection, under-
standing, and control. Even in the simple example of 
the ‘left segment’ discussed above, an appropriately 
built complex would know at the same time that 
there is a segment, that it is on the left, that it is not a 
dot (any dot) or a line (any line), and this knowledge 
is organized relationally. Arguably, only if a system 
is equipped with an integrated, relational organiza-
tion of concepts can it hope to answer many different 
questions, including arbitrary questions, in an intelli-
gent manner (Koch and Tononi, 2008), and only then 
can it be said to truly understand what it is seeing. As 
postulated here, the larger the context of understand-
ing, the higher the degree of consciousness.

Some empirical considerations: 
Accounting for neuroanatomy and 
neurophysiology

As much as a theory of consciousness should 
be self-consistent and have heuristic value, ulti-
mately it must be consistent with empirical data. 
Unfortunately, due to the special problems posed by 
assessing consciousness based primarily on behav-
ior, any particular piece of data can often be dif-
ficult to interpret. However, the empirical evidence 
becomes less ambiguous when considered together, 
and indeed an important objective for a theory is 
explanatory power: being able to account for seem-
ingly disparate data in a unified and parsimonious 
manner. The most relevant findings concerning the 
necessary and sufficient conditions for conscious-
ness come from neuroanatomy, neurophysiology, 
and neuropsychology (Tononi and Laureys, 2009). 
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As discussed in previous work (Tononi, 2004, 
2008), several observations concerning the neural 
substrate of consciousness fall into place within the 
IIT framework. Among them are: i) the association 
of consciousness with parts of the corticothalamic 
system but not with the cerebellar system; ii) the 
fact that neural activity over afferent and efferent 
pathways, and within cortico-subcortico-cortical 
loops remains unconscious; iii) the finding that 
even within cortex, some areas, such as the dorsal 
stream, do not seem to contribute to experience; iv) 
the special role that seems to be played by back-con-
nections and supragranular layers; v) the evidence 
that consciousness can be split by anatomical and 
functional disconnections; vi) the loss of conscious-
ness in generalized seizures despite intense, hyper-
synchronous firing; vii) the fading of consciousness 
during certain phases of sleep and anesthesia despite 
continuing neuronal activity; viii) the findings indi-
cating a breakdown of effective connectivity and/or 
the occurrence of stereotypic responses in vegetative 
patients. The next section adds some considerations 
on the relationship between the temporal grain size 
of information integration and attractor dynamics in 
the corticothalamic complex.

Attractor dynamics in the corticothalamic 
complex
The corticothalamic system is the part of the brain 
that, if severely damaged, causes a loss of con-
sciousness. Within the corticothalamic system, how-
ever, the situation is less clear, with respect to both 
necessity and sufficiency for consciousness (Tononi 
and Laureys, 2009). Can the cortex sustain con-
sciousness without the thalamus? Is posterior cortex 
necessary and sufficient for consciousness, and does 
prefrontal cortex contribute at all? Are medial corti-
cal regions necessary, or maybe the default network, 
perhaps as a connectional hub for intercortical or 
cortico-thalamo-cortical interactions? Do primary 
sensory and motor areas contribute at all? Does the 
dorsal stream in posterior cortex only contribute to 
behavior, but not to experience? What is the relative 
contribution of different cortical layers? Are supra-
granular layers necessary and sufficient for experi-
ence? Or are projection neurons in layer V critical? 
Do both excitatory and inhibitory neurons contribute 
to consciousness, or perhaps just some particular 
subset of cortical neurons? Or are the relevant ele-

ments groups of neurons rather than individual 
neurons? Can consciousness be sustained by feed-
forward connections only? Or are back-connections 
essential? Does every spike count, or only mean 
firing rates over hundreds of milliseconds? Finally, 
does the mode of firing matter, given the fading of 
consciousness during early slow wave sleep? Some 
of these questions are being investigated empiri-
cally, although definitive answers are hard to obtain. 
From the perspective of IIT, one can formulate a 
tentative scenario that may help to form a tentative 
model of possible neural substrates of conscious-
ness, with the caveat that such a scenario at this 
point is still largely speculative.
It has been recognized at least since Lashley and 
Hebb that the massive interconnectivity within and 
among cortical areas (and with thalamus) provides 
an ideal substrate for cooperative dynamics among 
distributed neurons, which Hebb called cell assem-
blies and others called coalitions (Crick and Koch, 
2003). A plausible scenario for characterizing such 
dynamics is in terms of transient attractors (Friston, 
1997, 2000; Rabinovich et al., 2006; Deco et al., 
2009). Simply put, neurons in the corticothalamic 
system seem coupled in such a way as to ensure the 
rapid emergence of firing patterns that are distrib-
uted over wide regions of the cortex, where some 
neurons are strongly activated, and many more are 
deactivated. These firing patterns remain stable 
(hence attractors) over a time scale of tens/hundreds 
of milliseconds, but then rapidly dissolve (hence 
transient), to make room for another transient attrac-
tor. Indeed, some EEG and MEG studies suggest 
that cortical activity patterns show brief periods of 
stability linked by even shorter periods of instabil-
ity (Lehmann et al., 2009; Musso et al., 2010; Van 
de Ville et al., 2010). An example of this attractor 
dynamics from an early model of large-scale cortical 
networks is shown in Fig. 7 (based on Sporns et al., 
1991; Tononi et al., 1992a).

Transient attractors and integration

According to IIT, several aspects of the organization 
of the corticothalamic system and of transient attractor 
dynamics appear well suited to information integra-
tion. The corticothalamic system includes strong local 
links as well as a network of long-range connec-
tions among nearby and distant areas, many of them 
reciprocal, giving rise to reentrant loops that favor 
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integration (Sporns, 2010; Stratton and Wiles, 2010). 
Connectional hubs along the medial surface of the 
cortex may facilitate the interaction of distant cortical 
regions; more diffuse projections from thalamic matrix 
cells may provide a shared background of excitability 
that also facilitates long-range interactions; the reticu-
lar thalamic nucleus may provide strong inhibitory 
coupling among distributed cortical areas.
Several dynamic factors also help long range, effec-
tive interactions. The rapid formation of attractors 
may be boosted by short-term strengthening of acti-
vated synapses; their dissolution after a brief period of 
stability may be brought about by the ensuing short-
term depression of synapses, as well as by destabiliz-
ing signals from neuromodulatory systems (Sporns et 
al., 1991; Tononi et al., 1992a). The time constants 
of neuronal integration, of various intrinsic currents, 
of AMPA and GABA receptors, and especially of 
NMDA receptors, ranging from tens to hundreds of 
milliseconds, also seem well suited to enhancing, sus-
taining, and terminating effective interactions in such 

a way that cooperative dynamics can extend to much 
of the cortex and yet remain flexible.
It is expected that the time scale of attractor forma-
tion and dissolution would correspond to the macro-
time scale at which integrated information reaches a 
maximum (see above, spatio-temporal grain). If that 
temporal grain is indeed that of meta-stable transient 
attractors, then the micro-level interactions among 
neurons at the time scale of a few milliseconds, 
although they constitute the microstructure underly-
ing attractor macro-states, would have no counter-
part in phenomenology, consistent with the longer 
time scale at which consciousness seems to flow.
It is also important that, during conscious states, 
neurons are usually poised at the edge of firing, 
and are thus extremely reactive to perturbations, 
in line with work on avalanches, criticality, and 
neural ‘noise’ (Beggs 2008; Sporns 2010; Chen et 
al., 2010; Deco et al., 2011). Oscillatory dynamics 
may enhance long-range interactions, and synchro-
nization across multiple frequency bands is both 

Fig. 7. - Top. Three snapshots of spontaneously generated transient attractors in a large-scale model of the cerebral 
cortex, based on (Sporns et al., 1991; Tononi et al., 1992a). Each colored core shows a meta-stable state (transient 
attractor) occurring over a central complex of units linked by specialized cortex-like connectivity. The firing patterns 
displayed were averaged over 50 milliseconds (200 time steps), with highly active units indicated in white and inac-
tive ones in black. The grey scale ‘halo’ represents separate chains of units each independently connected to units 
of the central complex, from which they remain excluded. Bottom. Time course of the relative activation of each 
of the 3 transients attractors (color coded). Note the rapid ignition, relative stability, and fast quenching of each 
transient attractor, and the emergence of the next one. The dashed line shows the accompanying fluctuations of 
the short-term enhancement in the efficacy of activated synapses (averaged over all synapses), which boosts both 
the ignition and the quenching of the attractors.
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an indication that short- and long-range effective 
interactions are taking place, as well as a mechanism 
to make such interactions more effective (Tononi et 
al.,1992a; Singer, 2009; Buzsáki, 2010).
IIT emphasizes that ‘winning’ (active) neurons are 
informationally meaningful only if considered in the 
context of their ‘losing’ (inactive) counterparts within 
the same complex. Thus, the excitatory connectiv-
ity must be complemented by an adequate inhibitory 
background to ensure that the network behaves as a 
single entity, both dynamically (attractor) and infor-
mationally/causally (complex). Short- and long-range 
excitatory connections in cortex innervate local inhibi-
tory interneurons, which enforce a competitive dynam-
ics that depends on the precise timing and balance of 
excitation/inhibition. It is also likely that the thalamic 
reticular nucleus plays a role in enforcing integrated 
activity patterns, by coupling local increases in activ-
ity with decreases elsewhere in the corticothalamic 
complex. Together, these various mechanisms ensure 
that attractor dynamics within the corticothalamic 
system is usually integrated within a single complex, 
meaning that it cannot be decomposed into the inde-
pendent dynamics of separate attractors.

Transient attractors and information

The corticothalamic system is not only remarkably 
integrated, but it is just as remarkably specialized, at 
multiple scales: different cortical lobes, areas, groups 
of neurons and even individual neurons are selec-
tively activated by different input patterns. Functional 
specialization is essential to ensure that, within a 
single corticothalamic complex, there is a large rep-
ertoire of transient attractors, which is a requisite for 
having a complex of high 

max
ΦMIP. A large repertoire 

of distinguishable attractors means that, when the 
complex is in any particular (meta-stable) attractor 
state, it is highly informative about which previous 
state would have caused it and which subsequent state 
it may effect. While classic attractor networks (with 
symmetric, all-to-all connectivity) have a limited 
repertoire of inflexible attractor states (measured as 
storage capacity), several features of the corticotha-
lamic system may greatly increase the repertoire and 
make it more easily accessible (‘fluid’ attractors). 
These features include sparse, asymmetric connectiv-
ity organized at both short- and long spatial ranges, 
various kinds of inhibitory mechanisms, sparse activ-
ity patterns (at any given time, only relatively few 

neurons are strongly active), and short term changes 
in synaptic and intrinsic conductances.
The asymmetry between converging forward con-
nections and diverging back-connections seems 
especially important in ensuring the compositional-
ity of information integration. Neurons higher up in 
the sensory hierarchy are selective for higher level 
concepts (see above) or invariants (a face, anywhere 
in the visual field), whereas neurons in the early stag-
es of sensory hierarchies are selective for lower level 
concepts (a vertical edge in a particular portion of 
the visual field). Through converging forward, driv-
ing connections, low-level neurons can select which 
high-level neurons should fire. Conversely, through 
diverging, modulatory back-connections high-level 
neurons can reinforce the activation of low-level 
neurons and constitute stable firing ‘cliques’ that 
link general and particular concepts. Such cliques 
could underlie hierarchical attractors (Bělohlavek, 
2000; Gros, 2009; Wennekers, 2009). An interesting 
possibility is that, in such hierarchically organized 
attractors, some portions of a transient attractor (the 
‘head’ or ‘pivot’, perhaps localized more frontally) 
may be stable for longer intervals than other, nested 
portions (the ‘body and limbs’), perhaps located 
closer to sensory areas (Braun and Mattia, 2010).
Finally, the abundance of “loops” of various length 
that connect each neuron to itself through the inter-
mediary of different subsets of neurons and different 
subsets of output/input connections, suggest that 
attractors, in addition to being transient and hierar-
chically organized, may be implemented not just as 
stationary patterns of activity, but as sequences of 
activations though such loops.
The combination of functional specialization and 
integration, together with a hierarchical organiza-
tion of mechanisms linking general and particular 
concepts, is well suited to the generation of qualia 
containing many points, yielding a conscious experi-
ence that is high in quantity (integrated information) 
and extremely specific in quality (a shape breaking 
many symmetries).

Spontaneous activity and responsiveness to 
environmental inputs

It has been known for a long time that the corticotha-
lamic system is spontaneously active, even during 
sleep. Moreover, this ongoing activity, even in the 
absence of environmental inputs, can be associated 
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with consciousness, as illustrated vividly by dreams. 
In fact, dreams may offer the most direct demonstra-
tion of the intrinsic dynamics of transient attractors 
and of the informational structure of consciousness. 
For example, dreams suggest the hierarchical nature 
of such dynamics, with some portions of the attrac-
tor lasting for longer times (dream setting, narrative) 
and others switching more rapidly, giving rise to a 
changing kaleidoscope of scenes and objects. The 
particular sequence of attractors in a dream is prob-
ably biased by the priming of subsets of connections 
by the previous attractor, thereby revealing associa-
tive links. During wakefulness, instead, while spon-
taneous activity persists, the selection of transient 
attractors is biased towards those that best capture 
the flow of inputs from the environment, possibly 
aided by a reset generated by novelty signals. An 
interesting question is whether during wakefulness 
transient attractors are ‘ignited’ and shaped bottom-
up, thanks to the driving effect of forward connec-
tions, whereas during dreaming the ignition and 
shaping are top-down (Nir and Tononi, 2010).

A geometrical agenda: Accounting 
for phenomenology

Besides accounting for experimental data, ultimately 
a theory of consciousness should also shed some light 
on the seemingly ineffable qualitative properties of 
phenomenology. For example, what is responsible 
for the particular temporal scale at which experience 
flows? What is responsible for the fact that much of 
experience appears to be organized in space? What 
accounts for the indisputable organization of experi-
ence into modalities and submodalities? What makes 
a color different from a smell? And what makes the 
color red feel the way it feels, and different from blue?
Viewing an experience as a shape in qualia space 
implies that features of experience that seem impos-
sible to account for in neural terms – like the redness 
of red or the differences between spatial vision and 
color vision or between vision and sound – should 
instead be accounted for in mathematical terms. As 
briefly suggested below and elsewhere (Tononi, 
2004, 2008; Balduzzi and Tononi, 2009), one can 
envision a close association between phenomenol-
ogy and the geometry of qualia. Some identities 
were already pointed out above:

i) The particular ‘content’ or quality of the experi-
ence is the shape of the maximally integrated con-
ceptual structure in qualia space (its shape Q) gener-
ated by a complex.
ii) A phenomenological distinction is a maximally 
irreducible cause-effect distinction (a concept).
iii) The intensity of each concept is its 

max
ϕMIP value.

iv) The ‘richness’ of an experience is the number of 
dimensions of the shape.
v) The scope of the experience is the portion of qua-
lia space spanned by its concepts.
vi) The level of consciousness is 

max
ΦMIP – the maxi-

mally integrated conceptual information generated 
by the complex.
vii) Similarities and dissimilarities between concepts 
should translate into closeness/distance in qualia space 
(blue is closer to red than it is to a sound). Similarities/
dissimilarities between experiences should translate to 
objective measures of similarity/dissimilarity between 
shapes in qualia space (related to the number and kinds 
of symmetries involved in specifying shapes or opera-
tions needed to transform one shape into another).
viii) The classic sensory modalities and submodali-
ties (sight, hearing, touch, smell, taste, and within 
sight color and shape) would correspond within a 
quale to subsets of points that are clustered together 
in qualia space (modes and submodes).
ix) A quale in the narrow sense (the blueness of 
blue) is a Q-fold: the sub-shape of Q that is lost 
when the contribution or a particular element is lost, 
either in the concept it specified alone, or in those it 
specified in combination with other elements.
x) Even elementary experiences (qualia in the narrow 
sense, such as pure blue) translate to highly complex 
shapes in qualia space and cannot be reduced to 
anything less. This is because all the mechanisms 
specifying blue as opposed to every perceivable 
color, a full-field spatial experience as opposed to a 
composite experience including shapes and move-
ment, a primarily visual experience as opposed to 
an auditory or olfactory one) must be operational 
to specify how that particular experience differs, 
in its own specific way, from every other possible 
experience, and make it what it is. In other words, 
the mechanisms specifying the color blue operate 
within the context of many other mechanisms that 
act, informationally, within a single quale.
xi) Homogeneous experiences (a blue cloudless 
sky) would correspond to a homogeneous shape, 
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whereas composite experiences (a cluttered desk) 
would correspond to a composite shape with many 
distinguishable sub-shapes (modes and sub-modes).
xii) The compositional structure of many experi-
ences would have an informational counterpart 
within the structure of the quale (Fig. 4). For 
example, seeing a square in the left lower field of 
vision implies the specifications, within the same 
quale, of many concepts, i.e. probability distribu-
tions. These include distributions specifying that the 
invariant ‘square’ is present (a repertoire specifying 
particular configurations of inputs compatible with 
the concept ‘square’, irrespective of its position in 
the visual field), as well as repertoires specifying 
its actual details (where each edge is and how it is 
oriented). Moreover, this ‘vertical’, ‘hierarchical’ 
compositionality must be complemented by the 
‘horizontal’ specification of what a square is not, 
that is, by a large number of points specifying that 
alternative invariants are absent (repertoires specify-
ing the concepts ‘not a triangle’, ‘not a circle’, ‘not 
a face’ and so on). Finally, there may be an ‘asso-
ciational’ specification of concepts tied to a square 
(cube, dice, checkerboard etc.). Only if the quale 
contains all the relevant concepts and informational 
relationships, can one say that the complex ‘under-
stands’ the square or, which is the same, that it ‘sees’ 
it consciously.
xiii) ‘Categorically’ structured experiences (taste, 
smell, color) and ‘topographically’ structured ones 
(visual space) would correspond to different sub-
shapes in qualia space, such as pyramid-like and 
grid-like shapes, which emerge naturally from the 
underlying neuroanatomy.
xiv) The refinement of experience that occurs 
through learning (as when one becomes a connois-
seur in some domain) would translate to a corre-
sponding refinement of shapes in qualia space, due 
to splitting of concepts mediated by changes in the 
underlying connectivity.
xv) Unconscious determinants of experience (e.g. 
the automatic parsing of sound streams into audible 
words) would be ‘hidden’ because the underlying 
mechanisms are outside the complex or occur at 
other spatial and temporal scales. This can happen, 
for instance, through units that are shared between a 
main complex and smaller complexes that serve as 
input or output channels or through loops carrying 
out local computations, whose internal information 

structure remains isolated from that of the main 
complex45.

Conclusion

In summary, IIT attempts to provide a principled 
approach for translating the seemingly ineffable qual-
itative properties of phenomenology into the language 
of mathematics. Ideally, when sufficiently developed, 
such language should permit the geometric character-
ization of phenomenological properties generated by 
the human brain as well as by other brains, natural or 
artificial. The theory also provides a parsimonious, 
self-consistent framework that attempts to account 
for key neuroanatomical, neurophysiological, and 
neuropsychological observations. To make progress, 
the theory will need extensive mathematical devel-
opments, practical ways of measuring integrated 
information (see for example Barrett and Seth, 2011; 
Griffith et al., in press; Oizumi et al., in press; van 
Veen et al., in press), complexes, and the integrated 
conceptual structures generated by large systems46. 
As one would expect with consciousness, this will 
require back and forth validation between theoretical 
models and empirical findings.
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Notes
1	 The expression “difference that makes a difference” 

was coined by (Bateson, 1972).
2	 Descartes started his philosophical investigations from 

the axiom ‘cogito ergo sum’, though his ‘cogito’ 
emphasized the thinking aspect of consciousness rather 
than the more general notion of having an experience.

3	 Contrast this intrinsic perspective – the one of the 
system itself – with the extrinsic perspective of an 
external observer: the observer can ask how informa-
tion is encoded, communicated or stored given the 
system’s state transitions, the observer’s expectations 
(prior distribution, e.g. based on observing the system), 
and assumptions about the system. Also, note that the 
term information here is used in a way that is closer to 
its original Latin meaning of “giving form” than to its 
use in communication theory. Thus, the information 
postulate can be interpreted as saying that a mecha-
nism in a state does something only if it “gives form” 
to its past and future, by causally constraining what 
otherwise would be utter disorder (maximum entropy). 
The integration postulate says that a mechanism in a 
state does something only if it does more than its parts, 
i.e. it is irreducible. The exclusion postulate says that a 
mechanism in a state does only one thing (an IF-THEN 
“transformation”) – the one that is maximally irreduc-
ible, thus avoiding multiple causation.

4	 This presentation is an update of previous expositions 
(Tononi, 2004, 2008; Balduzzi and Tononi, 2008, 
2009; Tononi, 2010). For example, repertoires are 
defined on subsets of elements rather than subsets of 
connections, based on the consideration that elements 
have ‘states’ and can thus make statements (ON/OFF, 
YES/NO, TRUE/FALSE). Moreover, instead of just 
input repertoires, this updated version makes use of 
cause-effect repertoires, which pair what elements 
specify about past and future. Also, only repertoires 
having ϕMIP > 0 are considered as potentially exist-
ing, and of those only those having 

max
ϕMIP as actu-

ally existing. Finally, systems are analyzed bottom-up 
rather than top-down: after designating a particular 
system of elements at a particular spatio-temporal 
scale (candidate system), one first finds all maximally 
irreducible cause-effect repertoires (concepts), start-
ing from first-level concepts (generated by individual 
elements), then second-level concepts (generated by 
two-plets of elements), and based on the constellation 
constituted by all the concepts determine the irreduc-
ibility of the system. In previous work, one would first 
evaluate if a system was irreducible as a whole, and 
then one would identify its concepts.

5	 Measures of causal information flow are been investi-
gated in the context of complex and adaptive systems 
(see for example Ay and Polani, 2006).

6	 An element is a unit that receives input connections, 
performs an operation on those inputs, and outputs its 
new state to its output connections (input/output func-
tions defining each mechanism can be deterministic 
or probabilistic). Such input-output functions yield 
the transition probability matrix (TPM). It is assumed 
here that elements implement the most ‘elementary’ 
mechanisms – they are memoryless ‘micro-elements’ 
– e.g. logical gates or linear threshold units. In prin-
ciple, one could use just a single kind of such micro-
elements, such as a NOR gate, to construct any other 
logical gate. More complicated units, having memory 
and capable of internal processing, can be constructed 
out of micro-elements. However, to be considered as 
elements in their own right (as opposed to a collection 
of elementary mechanisms), such units would need to 
constitute macro-elements (generating more informa-
tion than the constituting micro-elements, in space or 
time, see later sections), and their internal processing 
would not be communicable elsewhere in the system.

7	 The difference D(p,q) between two probability distri-
butions p and q can be measured in various ways. In 
previous work the Kullback-Leibler divergence D

KL
 

(p||q) = ∑ p
i
 log

2
 p

i
/q

i
 was used. D

KL
 has several useful 

properties but it is not symmetric and is not bounded, 
which makes it not ideal for evaluating divergences 
when q is not the maximum entropy distribution u (in 
that case, for discrete distributions, D

KL
 is the same as 

the difference in entropy between the distributions). 
Moreover, not being a metric, D

KL
 does not take into 

account whether some states of the system are closer 
than others (e.g. whether [0 0 0] is closer to [0 0 1] 
than to [1 1 1]). Distance measures in an appropriate 
metric space (see concept space below), such as the 
Wasserstein distance (also known as earth mover’s 
distance), may be better suited at capturing differenc-
es between distributions from the intrinsic perspec-
tive of a system. More generally, one would want a 
measure of the difference made by a mechanism (e.g. 
before and after a partition) not just as reduction of 
uncertainty (information as communication capacity, 
in the Shannon sense), but as specification – what it 
takes to transform something (here a distribution) and 
make it into something else (information as giving 
a particular form, in the classic sense of the word). 
Perhaps the most general way to do so is to consider 
the information distance between two objects, i.e. the 
maximum of the algorithmic complexity of one object 
given the other (shortest program that computes one 
given the other), which may ultimately correspond 
to the amount of thermodynamic work required to 
transform one into the other in the most efficient 
manner (Bennett et al. 1998; see also the notion of 
logical depth, which takes into account how long the 
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program takes). However, algorithmic complexity is 
a non-computable lower bound, which means that 
one needs to resort to more practical approximations, 
such as appropriate compressors. Moreover, one could 
argue that the appropriate distance between two distri-
butions should be constrained by the intrinsic nature 
of the space within which the distributions live. This 
would lead back to earth mover’s distance, in which 
case the minimal program would be the one specify-
ing how to optimally move the earth (probability 
values) from one distribution to the other.

8	 Partitions, indicated by x, can be evaluated by per-
forming the same computations after injecting noise 
(do(Hmax)) in the partitioned links in the input-output 
matrix. To fairly compare different partitions to find 
the MIP, it is necessary to normalize by the informa-
tion capacity of each partition.

9	 where the empty set [] is only allowed on either P or 
S, but not both.

10	 If several CER(S) yield the same max, one takes the 
CER(S) of largest scope (accounting for the most), 
where ϕMIP(S)>0, its subsets R have lower or at most 
equal ϕMIP, and its supersets T have lower ϕMIP: ϕMIP 
(R) ≤ ϕMIP (S)> ϕMIP (T), for all R∈S and all T∈S. If 
there are multiple maximal CER(S) each with the same 
scope, then at any given time only one is realized as a 
concept, although which one is indeterminate.

11	 Finding the partition yielding 
max

ϕMIP and correspond-
ing to the maximally irreducible set of causes-effects 
(MICE) is conceptually related to max flow – min cut 
problems.

12	 One could say that trying various CER and their 
partitions to find 

max
ϕMIP is the informational/causal 

equivalent of “cutting to the chase”. It is also related 
to finding the optimal tradeoff between the transmis-
sion of relevant information and the compression/
efficiency of the channel, see for example (Creutzig 
et al., 2009).

13	 In neural terms, the fact that, out of all possible causes 
of a neuron’s firing, the input that actually caused its 
firing remains undecidable from the intrinsic perspec-
tive, also means that “illusions” are inevitable. Based 
on the exclusion postulate, the intrinsic perspective 
entails the simplifying attribution of cause always to 
the core (most irreducible) cause, rightly or wrongly. 
Usually, in an adapted system, the actual cause and 
the core cause will be similar enough, but occasionally 
the actual cause may be quite different from the core 
cause, in which case an “illusion” ensues (this also 
applies to the case of a neuron’s firing being caused 
by subtle microstimulation).

14	 The exclusion postulate is related to the principle of 
sufficient reason – in fact, it enforces a principle of 
least reducible reason; to the principle of least action; 

to maximum likelihood approaches and to information 
minimization/compression (though it is causal, not just 
statistical); and of course ultimately to Occam’s razor.

15	 In this example, the cause repertoire component of a 
concept (backward, input, retrodictive, receptive con-
cept) can be taken to refer to a classic invariant – a set 
of inputs equivalently compatible with the present state 
of a certain mechanism (e.g. tables, faces, places, and 
so on); the effect repertoire component (forward, out-
put, predictive, projective concept) can be taken to refer 
to ‘Gibsonian’ affordances – a set of outputs equiva-
lently compatible with the present state of a certain 
mechanism (e.g. the consequences/associations/actions 
primed by seeing a table, face, place, and so on).

16	 The scope or ‘volume’ within concept space can be 
interpreted as a measure of how extensively the con-
cepts sample concept space. Ideally, they should be 
distributed in such a way that, together, they are as 
informative as possible about the concept simplex. 
This last point can be appreciated by comparing sys-
tems in which many different subsets specify similar 
concepts (nearby points) or, in the limit, identical 
concepts (a single point), with systems in which dif-
ferent subsets specify very different concepts (dis-
tant points). For the same number and intensity of 
concepts, the first kinds of systems generate mostly 
redundant information, covering only a small corner 
of the concept simplex (small scope) from a single 
‘purview’ (sharing the same specialization) and have 
thus very limited ‘understanding/control over the sys-
tem’s states. By contrast, the second kinds of systems 
generate information from many different purviews 
(different specializations) covering a much larger por-
tion of the concept simplex (large scope), and have 
thus much greater understanding/control over the 
system’s states. To evaluate the scope of the sampling 
of the concept simplex by a system’s concepts, one 
can associate each concept with a ball of unit volume, 
where the unit volume is obtained by packing the 
simplex with the 2n concepts (the maximum number 
of possible concepts for a system of n elements, cor-
responding to its powerset) generated by a system 
composed of n independent elements (having self-
connections) that are arranged in a product structure. 
Compared to this product structure, a typical system 
will likely generate fewer concepts, and balls of unit 
volume centered around them may overlap, resulting 
in a less informative sampling (redundancy). The con-
ceptual scope is thus the overall volume of the con-
cept simplex (without counting overlaps) sampled by 
the actual concepts generated by a system, assuming 
unit volume for each. One can then weigh the scope 
by multiplying each unit volume by its intensity, i.e. 
the amount of integrated information generated by 
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that concept (
max

ϕMIP). For this purpose, when there is 
overlap, only the volume with highest 

max
ϕMIP enters 

the multiplication.
17	 Note that constellations of concepts must satisfy sev-

eral requirements: i) they must be physically realiz-
able; ii) they must be self-consistent (that is, concepts 
that exclude/contradict each other cannot coexist; i.e. 
their product should never yield a distribution with 
zeros everywhere); iii) they must be irreducible. If 
these requirements are satisfied, ideally a constella-
tion of concepts should also: i) have as many concepts 
as possible; ii) they should be as irreducible as pos-
sible; iii) they should be as informative as possible 
about concept space, i.e. sample it as uniformly as 
possible (acting as representative “prototypes” of pos-
sible contingencies).

18	 As for concepts, evaluating the difference D between 
the two constellations (here, those of the unpartitioned 
and the partitioned system) can be done by considering 
a metric based on the earth mover’s distance, where 

max
ϕMIP values play the role of the weight to be moved. 

Unlike with probabilities, 
max

ϕMIP values of concepts 
do not sum to a fixed value. It is thus necessary to 
assume that the 

max
ϕMIP value of concepts lost due to a 

partition is moved to the maximum entropy distribu-
tion (Mainetti et al., in preparation). Alternatively, the 
difference between constellations could be measured 
by considering the information distance between them, 
i.e. the maximum of the algorithmic complexity of one 
given the other (Bennett et al. 1998). Since this lower 
bound is generally non-computable, one needs to 
resort to measures such as minimum description length 
or generalized Kernel distance (e.g. (Joshi et al. 2011)) 
on the cause and effect subspaces. Since the sum of 

max
ϕMIP values can differ between two constellations, 

one needs to consider not only the difference between 
constellations in terms of the relative positions of their 
concepts, but also in terms of their 

max
ϕMIP. Moreover, 

the measure D should be sensitive to whether sets of 
concepts in each constellation occupy nearby posi-
tions in concept space or not: for example, it will take 
less to go from one constellation to the other when 
the starting/ending points are close to each other than 
when they are not. As a consequence, constellations of 
concepts generated by highly homogeneous systems, 
in which most concepts are identical or nearly so, will 
differ much less from their partitioned counterparts 
than functionally specialized systems, where concepts 
are widely apart, i.e. specific (larger scope, see above; 
in addition to being generally much more numerous 
and integrated).

19	 After “freezing” he links between the set and its 
environment as well as any other internal parameter 
and treating them as “boundary conditions.” Thus, 

after selecting a candidate system of elements at a 
particular spatio-temporal scale, among the selected 
elements one evaluates cause-effect information and 
irreducibility by imposing all possible states as coun-
terfactuals and examining the consequences. All other 
variables and parameters internal to the system or 
at its interface with external elements or forces are 
considered as boundary conditions and treated as 
“factuals”, i.e. they are taken as fixed in their actual 
state. Such boundary conditions can include inputs 
from external elements through which the system 
interacts with its environment, or factors that sustain 
the system’s functioning, such as energy supply, neu-
romodulators that promote excitability, and so on, at 
various spatio-temporal scales.

20	 Within an integrated conceptual structure, one can 
distinguish a backward portion (specified by the cause 
repertoires), or understanding; and a forward portion 
(specified by the effect repertoires), or control.

21	 Unless, of course, the interactions become so strong 
that 

max
ΦMIP for the union exceeds that of each part, in 

which case the parts merge into a single complex.
22	 Occam’s razor conventional formulation, “entia non 

sunt multiplicanda praeter necessitatem”, is probably 
due not to Occam or his teacher Duns Scotus, but 
to John Ponce. It has important applications in the 
context of Solomonoff theory of inductive inference 
and compressibility (Solomonoff, 1964), see also 
(Hutter, 2005). If one can compress a wiring diagram 
into a product of smaller diagrams (e.g. by finding 
k-connected subgraphs) plus some residual terms, one 
identifies separate integrated conceptual information 
entities that cannot be reduced further (complexes), 
and beyond which no additional ‘higher’ entities exist. 
Each complex is then characterized by a particular 
integrated conceptual structure, within which different 
repertoires specified by subsets of elements exist only 
to the extent that they are not reducible.

23	 If they do not, then a spatio-temporal scale can be 
contained within another without overlap, at most 
providing a “boundary condition” (fixed parameter) 
for the interactions at the other scale.

24	 For a macro-level to beat a micro-level, despite the 
much larger number of states that are available to the 
micro-level, some features are especially important: 
i) the presence of some degree of indeterminacy at 
the micro-level (due to intrinsic noise or to perturba-
tions from the environment); ii) many-to-one map-
ping, such that many input states can produce the 
same output state, giving rise to irreversibility; iii) 
macro-mechanisms structured in such a way that they 
group noisy micro-states together in an advantageous 
manner; iv) the fact that, from the intrinsic perspec-
tive of the macro-system, all possible perturbations 
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(i.e. counterfactuals) must be conceived as applied 
to macro-states. This means that the actual distri-
bution of micro-states underlying the macro-level 
distribution will be different from their micro-level 
maximum entropy distribution, thus accounting for 
emergence without violating supervenience. In sum-
mary, the level at which ‘things’ really exist in and 
of themselves, i.e. from the intrinsic perspective, in 
both space and time, is the level at which 

max
ΦMIP is 

maximized – that is, the level at which ‘causal power’ 
is maximal. In other words, what really exists (and 
excludes any other level) is what makes the most dif-
ference – and this level is not necessarily the micro-
level as is often assumed in reductionist accounts.

25	 An important issue raised by the micro-macro distinc-
tion concerns computer simulations of, for example, 
conscious brains. If the logic gates that ultimately are 
responsible for simulating the informational/causal 
interactions among neurons that generate conscious-
ness within the brain, cannot themselves be macroed 
into elements and intervals corresponding, say, to 
neurons over hundred milliseconds, then the intrin-
sic informational/casual properties of those macro-
elements/intervals (the corresponding cause-effect 
repertoires etc.) would not exist intrinsically within 
the computer, yielding a true “zombie.” Except in 
the light of a theory validated with other means, how 
could one tell the difference?

26	 The terms anatomical, functional and effective con-
nectivity are commonly used, although sometimes 
with different interpretations, especially for effective 
connectivity. In a general sense, one should distin-
guish between an anatomical structure, a functional 
structure, an effective structure, and an informational 
structure, which may be state-dependent or averaged. 
The anatomical structure/connectivity corresponds to 
the graph of the system (which element is connected 
to which). The functional structure/connectivity cor-
responds to the observed average correlations (of 
any order) among elements. The effective structure/
connectivity captures the average causal effects of 
elements on other elements. Finally, the informational 
connectivity corresponds to the maximally integrated 
conceptual structure (retrodictive and predictive) gen-
erated by the system in a given state (or averaged over 
many states).

27	 The complete characterization of an experience or 
quale would thus require specifying all of the concepts 
(cause-effect repertoires in Q) of a complex. From the 
intrinsic perspective, these concepts provide the infor-
mation necessary to distinguish that experience from 
any other. From the extrinsic perspective, knowing 
these distributions and their degree of irreducibility, 
one would know all there is to be known about that 

experience. It is interesting to ask how much infor-
mation that is (in terms of algorithmic complexity or 
incompressible information). Clearly, the input-output 
matrix of a system (or transition probability matrix 
TPM) plus the state vector, if known and available 
to perform manipulations (injecting noise), could 
be used to derive all the quantities discussed here. 
However, the information in the TPM is both uncom-
pressed and implicit. A TPM is uncompressed if it 
can be reduced to the product of the smaller TPMs, as 
indicated by ϕMIP = 0. More generally, finding 

max
ϕMIP 

and 
max

ΦMIP over subsets of elements would indicate 
how best to compress a large TPM into the product 
of smaller, maximally irreducible TPMs, plus some 
extra terms. Also, it may turn out that a TPM at the 
finest spatio-temporal grain may be compressed to a 
coarser spatio-temporal grain with no loss (or indeed 
gain) in information. This aspect is captured again 
by finding 

max
ΦMIP over different spatio-temporal 

scales. The TPM is also implicit: while it contains 
all the information necessary to find complexes and 
specify their quale, making them explicit requires 
work. One must extract the repertoires specified by 
each element and subset of elements, find the MIP to 
establish which subsets integrate information, which 
sets of elements are maximally irreducible (concepts 
and then complexes), and at which spatio-temporal 
grain size. This requires examining the effects of a 
large number of perturbations (by performing parti-
tions and injecting noise/max entropy) within a large 
combinatorial space. At a minimum, one would need 
to calculate probability distributions specified by each 
element, from which one can calculate all the distribu-
tions specified by subsets of elements (as the product 
of distribution at lower levels in the power-set). From 
this one can establish, through appropriate partitions, 
which subsets specify maximally irreducible distri-
butions (concepts) and which maximally irreducible 
subsets constitute complexes. It would be interesting 
to know if obtaining a complex and its quale (a maxi-
mally integrated conceptual structure) is equivalent to 
finding the most compressed model/description of the 
causal structure of a physical process.

28	 In any case, describing a quale would not be the same 
as being that quale.

29	 Note that in an unpredictable environment it is 
important not only to have a large repertoire of pos-
sible actions, but also to have many different ways of 
achieving the same effect, i.e. degeneracy (Tononi et 
al., 1999). High degeneracy implies both high effec-
tive information and high integration in the effect 
repertoire component of the concepts available to a 
complex. In general, if information integration is high, 
a small subset of elements within a complex should be 
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able to affect many other elements (pleiotropy). At the 
same time, many subsets of elements should be able to 
produce the same effect over a small subset of outputs 
(degeneracy).

30	 In its simplified form (distribution of system states), 
the mismatch term is related in spirit to Bayesian per-
spectives and free-energy minimization, for example 
(Rao, 2004; Friston, 2009), as well as to the notion of 
causal entropy. It is also related to the quantity mini-
mized when a Bolzmann machine learns, by changing 
its connections, to generate endogenously with high 
probability the states of the input units triggered exog-
enously by the environment (Ackley et al., 1985).

	 Note that for 
max

ΦMIP to be high on average it is nec-
essary that both causes and effects of any subset of 
neurons are reliable and selective, that is, 

max
ϕMIP must 

also be high on average. Usually, this will go along 
with high (average) mutual information between 
past inputs and future outputs. Note also that with 
cause-effect information the emphasis is both on 
understanding (prediction) and control, since it is their 
minimum that is reflected in 

max
ϕMIP. On the input side, 

for example, a subset of elements would try and adapt 
its connections to capture correlations (coincidences) 
from the environment (through feed-forward connec-
tions). On the output side, it would try and adapt its 
connections to exert maximum control over its envi-
ronment. To do so, a subset of elements must evaluate 
if its present actions ‘make a difference’. Crucially, 
this can be assessed by sampling its future inputs: 
if different states of a subset yield specific outputs 
(actions) in the present, and these in turn reliably pro-
duce specific inputs (perceptions) in the future, then 
the subset can conclude that its actions are making 
a difference. This assessment can be made from the 
intrinsic perspective of the subset and must be causal, 
as it requires that the subset perturbs its environment 
by producing different outputs. In general, the maxi-
mization of 

max
ΦMIP (and of the average cause-effect 

information over the channel between the subset’s 
outputs and inputs) should take into account physical 
constraints associated with different subset states. In 
the case of neurons, for instance, the constraint that 
being ON is metabolically more expensive than being 
OFF would assign more expensive subset states (ON) 
to perceptions-actions that are rare (selectivity) and 
thus have high cause-effect information (Balduzzi 
and Tononi, 2012). Other physical constraints, for 
instance on the number of inputs and outputs, suggest 
that simply maximizing average cause-effect informa-
tion for each element is not sufficient. One reason is 
that what may be optimal for individual elements is 
not necessarily optimal for combinations of elements 
and vice-versa (for example, an individual element 

could maximize cause-effect information by merely 
connecting back to itself). Moreover, it is essential 
that different subsets of neurons specialize in such a 
way that they generate different cause-effect reper-
toires, thus covering different portions of conceptual 
space (specificity) and avoiding redundancy.

	 A strategy neurons can use is to strengthen subsets of 
connections A only when a persistent feed-forward 
input that made them burst (primarily through AMPA 
receptors) is associated with a persistent feedback 
burst (primarily gated by NMDA receptors) on the 
same connections. In this way a neuron can eventu-
ally ensure that firing together with a certain subset 
A of synergistic neurons will produce input A, while 
firing together with a different subset B of syner-
gistic neurons will produce input B, and so on. By 
following such a local rule, the neuron will not only 
optimize control (if I burst for A, I get A, if I burst 
for B, I get B, and so on) but promote an outcome in 
which different subsets of neurons generate different 
effects, yielding a larger number of concepts. This 
ensures that different subsets of elements specialize to 
perform different functions (maximizing information) 
and yet do so synergistically (maximizing integra-
tion), which is bound to be advantageous in an envi-
ronment with a rich causal structure. Of course, this 
will also ensure both an increase in capture (thanks 
primarily to plasticity in feed-forward connections) 
and a decrease in mismatch (thanks primarily to plas-
ticity in feed-back connections). The overall strategy 
should be to maximize the average value of integrated 
(irreducible) information proceeding in a bottom-up 
manner. That is, subsets of elements should maximize 
the cause-effect information they generate above and 
beyond that generated independently by their parts. 
Further constraints, for instance on total connection 
strength in the presence of noise, further suggest that 
subsets of elements should optimize maximally inte-
grated (irreducible) information, so as to focus their 
resources on core causes and effects (at the same time, 
weak connections outside the core concept would 
provide a repertoire of alternative concepts that can 
be strengthened and eventually substituted as core 
concepts in the face of an unpredictable, changing 
environment).

	 As was mentioned above, the environment will ulti-
mately take care of selecting those cause-effect rep-
ertoires that are not only highly effective/informative, 
but that match its causal structure and are therefore 
adaptive. A related constraint is that, in large adap-
tive systems such as brains, most elements connect to 
other elements within the system rather than directly 
with the environment. This has the advantage of 
allowing the brain’s actions to be guided by memory 
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(intrinsic models) and thereby go far beyond the cur-
rent sensory evidence (Tononi et al., 1996; Tononi 
and Edelman, 1997). On the other hand, in such sys-
tems it becomes important to ensure that the memory 
continues to match the environment by ‘capturing’ 
it. This can be done by systematically selecting in 
favor of the concepts generated when the system 
is embedded in the broader cause-effect loop that 
includes the external environment (wake), and against 
those produced by the system in isolation (sleep/
dreaming). During wake, the system would adjust 
its connections, both feed-forward and feed-back, 
primarily by strengthening those that pick up correla-
tions in the world here and now (‘World’ condition, 
as different from ‘Noise’), thus increasing the capture 
term. Net strengthening is expected due to the bias 
towards assigning higher cause-effect information to 
ON states, which must be achieved by strengthening 
rather than weakening connections if ON states are to 
percolate throughout the brain (Balduzzi and Tononi, 
2012). During sleep, the brain disconnects from the 
environment, and generates intrinsic activity patterns 
that provide a fair sampling of its overall intrinsic 
model of the world, not tied to the particular cor-
relations in the environment here and now (‘Dream’ 
condition). By protecting those synapses that are most 
strongly activated and depressing those that are not, 
sleep can enforce a process of competitive down-
selection. The net result is to decrease the mismatch 
term by favoring intrinsically generated states that 
match the overall statistical structure induced by the 
environment, and by eliminating those that do not 
(fantasies). An iterative process that intersperses peri-
ods of learning during wake with cycles of synaptic 
down-selection during sleep would increase signal 
to noise ratios by maintaining selectivity, favor the 
extraction of gist, the integration of new with old 
memories, and desaturate the ability to learn (Tononi 
and Cirelli, submitted).

31	 It is worth considering simplified estimates of match-
ing that may be applicable to neuroimaging data. 
For example, distance measures could be applied to 
covariance matrices obtained under World, Noise, and 
Dream conditions assuming a multivariate Gaussian 
distribution.

	 Also, since energy constraints in the brain force 
firing to be sparse and thus more informative than 
non-firing (Balduzzi and Tononi, 2012), one would 
expect that a larger number of concepts would be 
activated by World than by Noise. Moreover, one 
would expect that different inputs should lead to dif-
ferent responses in the World condition, but to the 
same, stereotypic response (“noise”) under the Noise 
condition. Moreover, for a well-adapted brain, the 

mismatch term should be low, as suggested by the 
similarity between waking and dreaming conscious-
ness (Nir and Tononi, 2010) and by the similarity of 
activity patterns in wake and sleep (‘reactivation’). 
Thus, estimates of the difference between the com-
plexity of spatio-temporal activation patterns under 
World and Noise conditions that reflect the brain’s 
capture of World may also work as approximate mea-
sures of matching. Finally, since high matching M 
requires high 

max
ΦMIP, estimates of optimal matching 

for a given brain, being proportional to its capacity 
for information integration, could be used to estimate 
consciousness itself.

32	 Since consciousness undoubtedly exists (indeed, it is 
the only thing whose existence is beyond doubt), if 
each individual consciousness is an integrated con-
ceptual structure, then integrated information must be 
a fundamental ingredient of reality – as fundamental 
as mass, charge, or energy (Tononi, 2008).

33	 Note that, in a deterministic system, there is always 
a one-to-one mapping of states forward in time (1 
is followed by 2). However, the backward mapping 
can be one-to-many (2 could have been preceded by 
many previous states), implying that the effective 
information generated by the mechanism in state 2 
may be insufficient to specify its previous state. In 
other words, going backward in time reversibly would 
require extra information than that available to the 
mechanism in its current state. Hence irreversibility.

34	 A useful way of seeing this point from a neurophysi-
ological perspective is to compare a response medi-
ated by a conscious corticothalamic main complex 
with one mediated by a reflex arc. Say the task is to 
blink if a light turns on and not to blink if it turns off 
(cf. the photodiode thought experiment). For a reflex 
arc – say one producing a blink in response to the 
light – the underlying wiring diagram includes just 
a small chain of neurons and connections, the nodes 
and connections in the reflex arc (assuming, for the 
sake of the argument, that the nodes of the reflex are 
reciprocally connected). The corresponding integrated 
conceptual structure would be equally small – indeed 
just a simple concept, and it would carry hardly any 
experiential quality. For a conscious human perform-
ing the same task, instead, the relevant wiring dia-
gram would be vast, including a large portion of the 
corticothalamic system. The corresponding integrated 
conceptual structure would be extraordinarily large 
and complex, containing a huge number of distinct 
concepts. This quale would correspond to the experi-
ence of seeing the light, and may also include, in a 
context-dependent manner, the intention to blink, or 
try and suppress the blink, or to say the word “light”, 
or to interrupt the experiment, and so on. This com-
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plexity may be ignored when examining how the task 
is performed from a limited extrinsic perspective, say 
that of a neurophysiologist looking for the neurons 
that are activated when performing the task: one 
may single out a causal chain ‘inscribed’ on top of 
the corticothalamic complex and represented by the 
neurons that fire, from a photoreceptor in the fovea 
to a motoneuron driving the blink, while ignoring the 
rest of the system. However, what is missed in such 
an approach is the large set of counterfactuals. In the 
case of the corticothalamic main complex, as opposed 
to the reflex arc, the silent neurons matter: if they had 
fired, in any of innumerable combinations, rather than 
having remained silent, the output would have been 
different. In other words, in a complex it is just as 
important that some neurons fire as that the others do 
not, whereas in the reflex arc there are no other neu-
rons that could affect the end result. The tendency to 
consider that only neurons that fire ‘cause’ effects, or 
generate information, is natural enough, but it is insuf-
ficient when dealing with an integrated system. By 
applying perturbations to the corticothalamic system, 
it would become apparent that the “causal funnel” 
(i.e. extended receptive field or cone of influence) of 
a neuron of the main complex ultimately leading to a 
voluntary blink involves the entire main complex: in 
other words, its output might have been different not 
only if the neurons prior to it in the causal chain that 
had fired had instead not fired, but also if neurons 
that were silent had instead fired. In other words, an 
input – output pair (function) performed by a large 
integrated conceptual structure is performed for many 
different reasons. In general, it is possible to imple-
ment any given function with a simpler circuit, like 
the reflex arc, but in that case the function will be 
performed for just one reason. However, by exploit-
ing counterfactuals, one can demonstrate what the 
integrated system has that the reflex system lacks.

35	 This notion of causation can also be said to quantify 
IF-THEN statements (IF 1 THEN 2) while considering 
all possible counterfactuals (If 2-THEN…), and while 
examining all compound IF-THEN conditions (IF 1 
AND 2, THEN…) as long as they are irreducible.

36	 Seeing conscious deliberations as maximally irreduc-
ible has some relevance for the issue of free will. 
Consider for example the requirement for autonomy: 
to be free, one must certainly be independent from 
constraints outside one’s deliberating consciousness. 
These include both environmental constraints, such as 
limitations that force us to a particular choice or that 
impede our own choice, and unconscious, ‘alien’ con-
straints that, while generated somewhere within our 
brain, affect our actions largely outside the control of 
the conscious self. Given the definition of a complex, 

a conscious choice is necessarily autonomous, as it is 
made intrinsically.

	 The requirement for understanding implies that, to be 
free, a choice must be based on a concept of what is 
at stake – for example, one can freely choose between 
right and wrong only if one has a notion of which 
actions are right and which are wrong under some cir-
cumstances. According to IIT, a complex can be held 
responsible for a certain choice only if it has a mecha-
nism implementing the corresponding causal concept, 
in this case the backward component of the concept. 
For example, I must have a concept corresponding to 
the distinction between right and wrong (IF certain 
sets of past states occur, THEN certain sets of future 
actions/omissions are right/wrong) to be responsible 
for that choice – that concept is a maximally irreduc-
ible cause for my action. Similar considerations apply 
to the requirements for self-control, since the forward 
component of concepts within a quale ensures control.

	 The requirement for irreducibility implies that a choice 
can only be free if it cannot be ascribed to anything 
less than myself – I am the only entity that can be 
said to be responsible for my choice. That is, when 
asking who is responsible for the choice, the answer 
should be ‘me’, meaning all the circuits underlying 
my present conscious experience, and nothing less 
than that. IIT indicates that each experience is a maxi-
mally integrated conceptual structure generated by a 
complex, and therefore what it will choose given a 
particular present state cannot be ascribed to anything 
less than the full structure, with all its concepts (recall 
the light-blink example of a previous note). This struc-
ture is supremely causal to account for the choice in 
that it is maximally irreducible – anything less won’t 
do, anything more won’t matter. Furthermore, the 
choice happens at the macro-level at which ΦMIP is 
maximized, meaning that our conscious choices are 
not an illusion supervening upon micro-level events 
that are the true causes, as is often assumed. Indeed, 
the macro-level exists only if it has more causal power 
than the micro-level, which it then supersedes. Thus, 
each choice is a choice of the whole complex, not 
reducible to a number of choices made within nearly 
independent modules, each in a limited context, or to 
choices made by micro-elements. Therefore a choice is 
the freer, the more it is conscious: more consciousness, 
more freedom. Moreover, a bit paradoxically, a choice 
is the freer, the more it is determined (intrinsically). 
This is one fundamental sense in which the key notion 
of alternative possibilities – the feeling that one could 
have acted otherwise, which is essential to the feeling 
if being responsible for one’s action, is captured by a 
large integrated conceptual structure: such a structure 
implies a very large number of counterfactuals (alter-
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native possibilities) that are under the control of the 
agent (they are part of his consciousness). In other 
words, a conscious choice is one in which a large 
number of highly informative concepts that make up 
my perceptions, thoughts, beliefs, desires, feelings, 
memories, and character, all concur in determining a 
choice in the integrated ‘tribunal’ of consciousness. 
Note however that, even though every conscious 
choice involves a large number of counterfactuals, it is 
still useful to distinguish between ‘deep’ and ‘shallow’ 
conscious decisions, based on how many concepts are 
dirctly involved in determining the choice here and 
now. At one extreme, the decision to request a divorce 
or not is likely to involve simulatenously many differ-
ent concepts within the complex, so it is deep. At the 
other extreme, the decision to flex one’s finger or not 
during an experiment on free will depends on just a 
small number of concepts (do I feel the urge or not), 
so it is shallow. This is because the previous conscious 
decision to participate in an experiment on free will 
has had the consequence of fixing most variabels 
within the main complex, so the only variable that is 
left free to vary is the ‘urge’ to act.

	 In this view, freedom requires first and foremost irre-
ducibility, meaning that a choice cannot be ascribed 
to anything external, or anything less, than the agent. 
However, indeterminism also plays a role, though not 
the usual role of reducing responsibility by substitut-
ing it with chance. Recall that if a complex generates 
maximal integrated information at a macro-scale in 
space or time (say neurons instead of subatomic par-
ticles, and over hundreds of milliseconds), this means 
that: i) the system is most determined, in an informa-
tional/causal sense, at that macro-scale than at any 
micro-scale; but ii) it is also necessarily under-deter-
mined, because the macro-level can be more informa-
tive/causal than the micro-level only if there is some 
indeterminacy. Given that our own consciousness 
appears to flow at a macro spatio-temporal level, some 
degree of indeterminism is a given (in line with both 
physical sources of indeterminacy and the simple fact 
that the environment is unpredictable). But IIT does 
not consider indeterminism as a drop of randomness 
that instils some arbitrariness into a preordained cas-
cade of mechanisms, thus decreasing their causative 
powers. Rather, in this view indeterminism provides 
a backdrop of ultimate unpredictability against which 
macro-level, integrated mechanisms fight to increase 
understanding and control – a fight for increasing 
the causative powers of consciousness, and the more 
these increase, the more freedom increases. But since 
this is a battle against a backdrop of indeterminism, 
its results are never completely predictable. In other 
words, freedom of will is a fight in which order (inte-

grated information) tries to minimize disorder (lack 
of constraints) by taking into account as many con-
straints (knowledge) as possible. A bit like building 
a society or a civilization out of relative chaos, or a 
bit like evolution creating macro-order out of micro-
level disorder, thus increasing complexity. But as 
with societies, civilizations, and evolution, what will 
actually occur can never be predicted exactly before 
it happens, and micro-fluctuations – a queen and a 
squire falling in love, two lizards separated from the 
mainland after a flood – may initiate an extraordinary 
turn of events that nobody could predict, not even the 
universe itself.

37	 It is interesting to consider how the notion of maximal-
ly irreducible set of past causes of future effects maps 
onto accounts of trajectories of dynamical systems, for 
example accounts of how an element may be enslaved 
by one of two weakly coupled attractors, though being 
subjected to causal influences from both. It is also 
interesting to consider how the intrinsic notion of 
causation indicated here maps onto an extrinsic notion 
of causation developed along parallel lines (Hoel et 
al., in preparation). In the intrinsic perspective, one 
takes a mechanism in a state and asks what could have 
potentially caused it and what are its potential effects 
(causal power). From the extrinsic perspective, one 
takes a given event (i.e. an observed state) and consid-
ers what past event actually caused it and what are 
its actual future effects. In this way, it is possible to 
define an extrinsic notion of causal action based on the 
sufficiency (reliability) and necessity (selectivity) of 
the transition from one event to the next, and the size 
of the repertoire of counterfactuals. By applying the 
information, integration, and exclusion postulates, one 
can then proceed to partitions to identify maximally 
irreducible (“core”) cause-effects as well as sets of 
cause-effects (“cause-effect complexes”).

38	 Note that exclusion can also be applied to define not 
only the set of elements and spatio-temporal grain at 
which information integration reaches a maximum, 
but even the mechanism itself, considered as the maxi-
mally irreducible input-output function among a set of 
possible functions. For example, consider a potential 
mechanism “neuron” that is firing. Why should every 
extra-synaptic glutamate receptor on the membrane 
of the neuron not be considered as part of the neu-
ron’s mechanism, since it is capable of binding stray 
glutamate molecules and produce some slight depo-
larization? Because by exclusion, after “freezing” the 
boundary conditions, the contribution of that receptor 
to the neuron’s firing, unlike the contribution of the 
strongest synapses on the neuron, can be eliminated 
(reduced) with minimal informational/causal loss. In 
this way, identifying the core cause of the neuron’s 
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firing reveals the neuron’s core mechanism – its most 
irreducible causal role.

39	 This is because concepts are ways of grouping possible 
states of the elements of a complex (for a catalogue of 
Boolean concepts over systems of up to 4 binary ele-
ments, see Feldman, 2003). The number of concepts is 
even larger if one considers cause-effect pairs, as in the 
present case, not to mention sequences of states over 
time (melodies). It is worth noting that the number of 
concepts over a system of elements that can be imple-
mented by the elements themselves (through causal 
interactions) is therefore only a fraction of all possible 
concepts that could be formulated over the system. 
That is, a system’s understanding/control of itself is 
necessarily incomplete, an instance of incompleteness 
that is reminiscent of well-known incompleteness the-
orems in axiomatic systems. On the other hand, while 
it is conceivable to implement a much larger number of 
concepts to categorize and control a system externally, 
by resorting to additional, external elements (from the 
extrinsic perspective), these concepts would not be 
integrated within a single experience (unless they are 
in the mind of the beholder). So, while even a system 
that maximizes the number of concepts within a sin-
gle maximally integrated conceptual structure would 
remain substantially incomplete, it would neverthe-
less have the benefit of much more comprehensive 
understanding and control, since its concepts would be 
experienced ‘together’.

40	 With due differences, a similar strategy is employed in 
relational databases and in object-oriented program-
ming.

41	 Note that neural oscillations and fine temporal syn-
chronization among units responding to different 
aspects of a particular object or event (specifying 
related concepts) can greatly enhance these differen-
tial effects. This is because neurons that are oscillat-
ing in phase or are otherwise synchronous can have 
greater joint (synergistic and thus irreducible) effects 
on downstream targets, due to the short integration 
time constants of membranes, various receptors and 
so on. See for example (Sporns et al., 1991; Tononi, 
1992; Tononi et al., 1992a; 1992b; Buzsáki 2010).

42	 In this context, language has obvious benefits. Not 
only does language add many new concepts, includ-
ing concepts specified over internal system units (as 
opposed to input units), but it also helps making many 
concepts more accessible.

43	 Presumably, the underlying neural mechanisms would 
be similar to those that are thought to mediate atten-
tional effects, including back-connections and lateral 
connections, the action of the reticular thalamic nucle-
us, the precise timing of inhibition, and the multipli-
cative properties of NMDA receptors (Tononi et al., 

1992a; Roelfsema and van Ooyen, 2005). The latter 
seem especially well suited to ensuring that a neuron’s 
level/duration of firing/synchronization can be modu-
lated by ‘contextual’ input conveyed for example by 
back-connections, while at the same time preserving 
the selectivity of the main concept specified by that 
neuron, as typically conveyed by its driving input 
through forward connections.

44	 As discussed elsewhere (Tononi, 2010), certain con-
cepts (questions and answers) are more easily accessi-
ble than others. One can speculate that concepts would 
be more accessible or ‘explicit’ if the relevant neural 
units can themselves be accessed easily and selective-
ly, for example through back-connections, which may 
vary depending on the cortical area, whether they are 
locally clustered rather than widely distributed, and so 
on. Ease of access may be partly related to the distinc-
tion between access and phenomenal consciousness 
(Block, 2005; Tononi; 2010). Alternatively, one could 
say that information that is specified by a concept (a 
maximally irreducible probability distribution speci-
fied by a subset of elements) is explicit, whereas infor-
mation that can be inferred but is not specified by a 
concept remains implicit. For example, with respect to 
the cause repertoire, if C copies A and D is an XOR 
of A,B, and both C and D are OFF, then one can infer 
that B is OFF, but there is no explicit concept for it.

45	 However, the possibility of a non-dominant complex 
of relatively high Φ that may be largely excluded from 
access to behavioral outputs (a “minor” complex) 
should not be discounted, for example in conditions 
of perceptual rivalry.

46	 While a precise evaluation of Φ and Q for realistic 
systems is computationally prohibitive, by making 
certain plausible assumptions it should be possible to 
develop practical measures that reflect the degree of 
information integration in different systems or in the 
same system under different conditions. In addition 
to the approaches suggested in Note 31, one could 
evaluate cause-effect information (or, making further 
assumptions, mutual information) for individual ele-
ments with respect to the entire system at previous 
and following time intervals, then for subsets of 2 
elements, 3 elements and so on, up to the full system 
with respect to itself. In the extreme case of a com-
pletely homogeneous systems (full connectivity), the 
expected value of cause-effect information would not 
increase with subset size (knowing the state of 2, 3 or 
more elements would add no information compared 
to knowing the state of 1 element); in a completely 
modular systems (say, a system made of discon-
nected modules of 2 elements), the expected value of 
cause-effect information should grow linearly with 
subset size; in a complex system characterized by both 
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functional segregation and integration, cause-effect 
information can grow supralinearly, where the supra-
linear increase should reflect the points in qualia space 
having ϕ > 0 (knowing the state of more elements 
would add information compared to the information 
provided by individual elements taken separately). 
Ideally, one would evaluate these quantities under 
maximum entropy perturbations and, for each subset 
of elements, consider the increase in cause-effect 
information over its minimum information partition. 
In practice, one may resort to observed probability 
distributions and, for representative subsets of ele-
ments, evaluate the increase (synergy) or decrease 
(redundancy) of information compared to the summed 
information of the subset’s constituting elements. 
Also, approximate measures of matching could be 
used to estimate integrated information, and by exten-
sion consciousness, both across individuals and across 
species, since the maximum value of matching for a 
given brain is likely to be limited by its value of Φ. 
Such an approach may be particularly useful when 
dealing with pathological conditions, both during 
development and after brain lesions.
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