Open Access Open Access  Restricted Access Subscription or Fee Access

X-ray micro-computed tomography of postmortem brain tissue using potassium dichromate as a contrast agent.

M. Herrera, B. Notario, M. C. Barrio, B. D. Metscher, J. Murillo Gonzalez


No abstract available


X-ray tomography; potassium dichromate; contrast agents; myelin; white matter; sheep brain

Full Text:



Adams C.W.M., Abdulla Y.H., Bayliss O.B., Weller R.O. The reaction of Baker's chromate reagent with lipids. J Histochem Cytochem, 13: 410-411, 1965.

Baker J.R. The histochemical recognition of lipine. Q. J. Microsc. Sci., 87: 441-70, 1946.

Baker J.R. The fine structure produced in cells by fixatives. 2. potassium dichromate. Q. J. Microsc. Sci., 106: 15-21, 1965.

Bjartmar C., Wujek J.R., Trapp B.D. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J. Neurol. Sci., 206: 165-171, 2003.

Chan K.C., Fan S.J., Zhou I.Y., Wu E.X. In vivo chromium-enhanced MRI of the retina. Magn. Reson. Med., 68: 1202-1210, 2012.

Ciarmiello A., Cannella M., Lastoria S., Simonelli M., Frati L., Rubinsztein D.C., Squitieri F. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J. Nucl. Med., 47: 215-222, 2006.

Davis K.L., Stewart D.G., Friedman J.I., Buchsbaum M., Harvey P.D., Hof P.R., Buxbaum J., Haroutunian V. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry, 60: 443-456, 2003.

de Crespigny A., Bou-Reslan H., Nishimura M.C., Phillips H., Carano R.A., D’Arceuil, H.E. 3D micro-CT imaging of the postmortem brain. J. Neurosci. Methods, 171: 207-213, 2008.

Dortch R.D., Apker G.A., Valentine W.M., Lai B., Does M.D. Compartment-specific enhancement of white matter and nerve ex vivo using chromium. Magn. Reson. Med., 64: 688-697, 2010.

Elftman H. Controlled chromation. J. Histochem. Cytochem., 2: 1-8, 1954.

Elleder M. and Lojda Z. Studies in lipid histochemistry. Histochemie, 36: 149-166, 1973.

Evangelou N., Konz D., Esiri M.M., Smith S., Palace J., Matthews P.M. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain, 123: 1845-1849, 2000.

García-Segura L.M., Martínez-Rodriguez R., Toledano A., De Agustin M., Rodríguez-Gonzalez C. Histochemical investigation of phospholipids and simple triglyceride esters in the cerebellum of the rat. Trab. Inst. Cajal Invest. Biol., 66: 235-245, 1974.

Gignac P.M., and Kley N.J. Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. J. Exp. Zool. B. Mol. Dev. Evol., 322: 166–176, 2014.

Golgi C. Sulla fina anatomia del cervelletto umano. Arch. Ital. Malatie Nervosi, 11: 90–107, 1874.

Gray P. Fixatives. pp. 232-253. In: Gray P. (Ed.) The microtomist's formulary and guide. New York, The Blakiston Company, Inc., 1954.

Greenwood N.N., Earnshaw A. chemistry of the elements. 2nd edition, 1997, Oxford: Butterworth-Heinemann.

Holczinger L. The reaction of unsaturated fats with the acid hematein test. Histochemie, 4: 120–122, 1964.

Lee A.B. Hardening agents. Salts. pp. 46-48. In: Lee A.B. (Ed.) The microtomist´s vade mecum. A hand-book of the methods of microscopic anatomy. London, Churchill, 1890.

Li Z., Clarke J.A., Ketcham R.A., Colbert M.W., Yan F. An investigation of the efficacy and mechanism of contrast-enhanced X-ray computed tomography utilizing iodine for large specimens through experimental and simulation approaches. BMC Physiology, 15: 5-15, 2015.

Lillie R.D. Mechanisms of chromation hematoxylin stains. Histochemie, 20: 338-354, 1969.

Metscher B.D. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn., 238: 632–640, 2009a.

Metscher B.D. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol., 9: 11-20, 2009b.

Metscher B.D. X-ray microtomographic imaging of intact vertebrate embryos. Cold Spring Harb. Protoc., 12: 1462-1471, 2011.

Metscher B.D. Biological applications of X-ray microtomography: imaging microanatomy, molecular expression and organismal diversity. Microsc. Anal. (Am. Ed.), 27: 13-16, 2013.

Mizutani R. and Suzuki Y. X-ray microtomography in biology. Micron. 43: 104–115, 2012.

Morest D.K. The Golgi methods. pp. 124-138. In: Heym C. and Forssmann W.G. (Eds.) Techniques in neuroanatomical research. Berlin, Springer-Verlag, 1981.

Morrison, R.T. and Boyd R.N. Organic chemistry, 2012, New Jersey: Prentice Hall.

Müller H. Anatomische Untersuchung eines Microphthalmus. Verh. D, Phys.-Med. Ges. Würzb., 10: 138-146, 1860.

Parlanti P., Cappello V., Brun F., Tromba G., Rigolio R., Tonazzini I., Gemmi M. Size and specimen-dependent strategy for X-ray micro-CT and tem correlative analysis of nervous system samples. Sci. Rep., 7: 2858-2865, 2017.

Pauwels, E., Van Loo, D., Cornillie, P., Brabant, L., Van Hoorebeke, L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X‐ray computed tomography imaging. J. Microsc., 250: 21-31, 2013.

Quarles R.H., Macklin W.B., Morell P. Myelin formation, structure, and biochemistry. pp. 51-71, In: Siegel G.J., Albers R.W., Brady S., Price D. (Eds.). Basic neurochemistry. New York: Elsevier and Academic Press, 2006.

Ribi W., Senden T.J., Sakellariou A., Limaye A., Zhang S. Imaging honey bee brain anatomy with micro-X-ray-computed tomography. J. Neurosci. Methods, 15: 17193-17197, 2008.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods, 9: 676-682, 2012.

Schulz-Mirbach T., Heß M., Metscher B.D. Sensory epithelia of the fish inner ear in 3D: studied with high-resolution contrast enhanced microCT. Front. Zool., 10: 63-70, 2013.

Smith D.B., Bernhardt G., Raine N.E., Abel R.L., Sykes D., Ahmed F., Pedroso I., Gill RJ. Exploring miniature insect brains using micro-CT scanning techniques. Sci. Rep., 6: 21768-21777, 2016.

Speight J. Lange's Handbook of chemistry. 2005. New York-Toronto: McGraw-Hill Education.

Strausfeld N. J. The Golgi method: its application to the insect nervous system and the phenomenon of stochastic impregnation. pp. 131-203. In: Strausfeld, N.J. and Miller, T.A. (Eds.) Neuroanatomical techniques. Berlin, Heidelberg, New York: Springer Verlag, 1980.

Tahara R. and Larsson H.C. Quantitative analysis of microscopic X-ray computed tomography imaging: Japanese quail embryonic soft tissues with iodine staining. J. Anat., 223: 297–310, 2013.

Thompson P.M., Hayashi K.M., De Zubicaray G., Janke A.L., Rose S.E., Semple J., Herman H., Hong M.S., Dittmer S.S., Doddrell D.M., Toga A.W. Dynamics of gray matter loss in Alzheimer's disease. J. Neurosci., 23: 994-1005, 2003.

Valverde F. The Golgi method: a tool for comparative structural analyses. pp.12–31. In: Nauta W.J.H., and Ebbesson S.O.E. (Eds). Contemporary research methods in neuroanatomy. Berlin: Springer, 1970.

Vickerton P., Jarvis J., Jeffery N. Concentration-dependent specimen shrinkage in iodine-enhanced microCT. J. Anat., 223: 185–193, 2013.

Watanabe T., Tammer R., Boretius S., Frahm J., Michaelis T. Chromium(VI) as a novel MRI contrast agent for cerebral white matter: preliminary results in mouse brain in vivo. Magn. Reson. Med., 56: 1-6, 2006.

Weigert C. Zur Markscheidenfärbung. DMW-Deutsche Medizinische Wochenschrift, 17: 1184-1186, 1891.

White G.E. and Brown C. Variation in Brain Morphology of Intertidal Gobies: A Comparison of Methodologies Used to Quantitatively Assess Brain Volumes in Fish. B. rain. Behav. Evol., 85: 245–256, 2015.

Zhang X., Bearer E.L., Perles-Barbacaru A.T., Jacobs R.E. Increased anatomical detail by in vitro MR microscopy with a modified Golgi impregnation method. Magn. Reson. Med., 63: 1391-1397, 2010.


  • There are currently no refbacks.